A. Inscribed Figures

分类讨论打表即可。

PS:这道题翻译有歧义。

这样稍微翻转一下,就可以是\(7\)个交点呀...(大概是我没看英文题干导致的惨案)

#include <cstdio>
#include <iostream>
using namespace std;
const int N = 110;
int n, a[N], ans = 0;
int d[3][3]{
{-1, 3, 4},
{3, -1, -1},
{4, -1, -1}
};
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; i++)
scanf("%d", a + i); for(int i = 2; i <= n; i++){
int res = d[a[i - 1] - 1][a[i] - 1];
if(i > 1 && i + 1 <= n && a[i + 1] == 2 && a[i] == 1 && a[i - 1] == 3) res = 3;
if(res == -1){
puts("Infinite");
return 0;
}else{
ans += res;
}
}
printf("Finite\n%d\n", ans);
return 0;
}

B. Ugly Pairs

将奇数字母\((char - 'a') \& 1\)与偶数字母分别分开来升序排序,设为\(A\)、\(B\)。

尝试\(AB\)或者\(BA\),若都不行则无解(注意,题有坑,\(za\)是可以的,而\(az\)不行)


证明:

\(A\)与\(B\)都满足\(str[i] <= str[i + 1] (1 <= i < len)\)

若\(A.end()\)不满足\(B.begin()\),反过来匹配也不行。则说明无论怎么拼,它们都是不严谨递增的。

则它们的开头与结尾是相邻的,它们相当于一个并行的状态,必须有一方是不严谨递增的重复字母且一方邻向。(否则不可能不严谨递增)

#include <cstdio>
#include <iostream>
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110;
char s[N];
int n, vis[N];
vector<char> A, B;
char inline pre(char c){
return 'a' + ((c - 'a' + 25) % 26);
}
char inline nxt(char c){
if(c == 'z') return '?';
return 'a' + ((c - 'a' + 1) % 26);
}
int main(){ int T; scanf("%d", &T);
while(T--){
A.clear(); B.clear();
scanf("%s", s + 1);
n = strlen(s + 1);
for(int i = 1; i <= n; i++){
if((s[i] - 'a') & 1) A.push_back(s[i]);
else B.push_back(s[i]);
}
sort(A.begin(), A.end());
sort(B.begin(), B.end());
if(A.empty() || B.empty()){
for(int i = 0; i < A.size(); i++)
putchar(A[i]);
for(int i = 0; i < B.size(); i++)
putchar(B[i]);
printf("\n");
}else if(pre(A.back()) != B[0] && nxt(A.back()) != B[0]){
for(int i = 0; i < A.size(); i++)
putchar(A[i]);
for(int i = 0; i < B.size(); i++)
putchar(B[i]);
printf("\n");
}else if(pre(B.back()) != A[0] && nxt(B.back()) != A[0]){
for(int i = 0; i < B.size(); i++)
putchar(B[i]);
for(int i = 0; i < A.size(); i++)
putchar(A[i]);
printf("\n");
}else puts("No answer");
}
return 0;
}

C. Match Points

发现答案具有单调性,既然有\(3\)个,那么一定有\(2\)对,可以二分答案。

\(check()\)函数的检查是一个贪心的过程,使\(x_i\)匹配\(x_{(n / 2) + i}\)这样是很明显最优的方案。


证明:

存在\(x_a <= x_b <= x_c <= x_d\)

若\((a, b),(c, d)\) 可匹配成功,那么\((a, c),(b, d)\)必定能匹配成功,反命题则不然。

那么\(x_b - x_a >= z\),也就是\(x_c >= x_b >= z + x_a\),换过来就是\(x_c - x_a >= z\)

\((b, d)\)的证明同理,所以一一匹配一定是最优的。

PS:写完了程序才发现可以直接\(O(n)\)求解,看了题解才知道自己太弱了...

#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 200010;
int n, z, x[N];
bool check(int m){
for(int i = 1; i <= m; i++)
if(x[n - m + i] - x[i] < z) return false;
return true;
}
int main(){
scanf("%d%d", &n, &z);
for(int i = 1; i <= n; i++)
scanf("%d", x + i);
sort(x + 1, x + 1 + n);
int l = 0, r = n / 2;
while(l < r){
int mid = (l + r + 1) >> 1;
if(check(mid)) l = mid;
else r = mid - 1;
}
printf("%d\n", l);
return 0;
}

D. 0-1-Tree

自闭,想不到什么好方法,\(dp\)死活想不出来...

计数问题,可以利用加法原理分开处理。

符合条件的点对\((u, v)\)有三种情况:

  1. 全部是\(0\)边
  2. 全部是\(1\)边
  3. 先经过一些\(0\)边,然后经过\(1\)边

对于情况\(1\),我们可以考虑让图仅存在\(0\)边,然后对于每个连通块,它的点对数量为:

\(size * (size - 1)\)。可以理解为每一个点可以找另外连通块的所有点,交换下来仍然成立。

对于情况\(2\),同理情况\(2\)。

对于情况\(3\),可以考虑找到一个截点\(x\),路径考虑为\(s -> x -> t\),\(s - > x\)上的路径全部为\(0\),\(x -> t\)的路径全部为\(1\)。这种情况,方案数为\((size_{x属于的0边连通块} - 1) * (size_{x属于的1边连通块} - 1)\),理解为在\(x\)属于的\(0\)边连通块中找一个点\(s(s != x)\) ,在\(1\)边同理。

对于上述所有操作,仅仅是集合之间的合并,可以用并查集维护。

#include <iostream>
#include <cstdio>
using namespace std;
typedef long long LL;
const int N = 200010, M = N << 1;
int n, f[N][2], size[N][2];
LL ans = 0;
int inline find(int x, int c){
return f[x][c] == x ? x : f[x][c] = find(f[x][c], c);
}
void merge(int a, int b, int c){
a = find(a, c), b = find(b, c);
if(a != b) f[a][c] = b, size[b][c] += size[a][c];
}
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; i++){
f[i][0] = f[i][1] = i;
size[i][0] = size[i][1] = 1;
}
for(int i = 1, u, v, w; i < n; i++){
scanf("%d%d%d", &u, &v, &w);
merge(u, v, w);
} for(int i = 1; i <= n; i++){
if(f[i][0] == i)
ans += (LL)size[i][0] * (size[i][0] - 1);
if(f[i][1] == i)
ans += (LL)size[i][1] * (size[i][1] - 1);
int p = find(i, 0), q = find(i, 1);
ans += (LL)(size[p][0] - 1) * (size[q][1] - 1);
}
printf("%lld\n", ans);
return 0;
}

Codeforces Edu Round 64 A-D的更多相关文章

  1. Codeforces70 | Codeforces Beta Round #64 | 瞎讲报告

    目录 前言 正文 A B C D E 前言 这个毒瘤的517 放了Div1 然后D题是昨天讲的动态凸包(啊喂!我还没来的及去写 结果自己想的是二分凸包 (当然没有写出来 写完前两题之后就愉快地弃疗 C ...

  2. Educational Codeforces Round 64 (Rated for Div. 2)题解

    Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...

  3. Educational Codeforces Round 64 部分题解

    Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...

  4. Educational Codeforces Round 64(ECR64)

    Educational Codeforces Round 64 CodeForces 1156A 题意:1代表圆,2代表正三角形,3代表正方形.给一个只含1,2,3的数列a,ai+1内接在ai内,求总 ...

  5. Educational Codeforces Round 64部分题解

    Educational Codeforces Round 64部分题解 A 题目大意:给定三角形(高等于低的等腰),正方形,圆,在满足其高,边长,半径最大(保证在上一个图形的内部)的前提下. 判断交点 ...

  6. Codeforces Beta Round #80 (Div. 2 Only)【ABCD】

    Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...

  7. Codeforces Beta Round #62 题解【ABCD】

    Codeforces Beta Round #62 A Irrational problem 题意 f(x) = x mod p1 mod p2 mod p3 mod p4 问你[a,b]中有多少个数 ...

  8. Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】

    Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...

  9. Codeforces Beta Round #13 C. Sequence (DP)

    题目大意 给一个数列,长度不超过 5000,每次可以将其中的一个数加 1 或者减 1,问,最少需要多少次操作,才能使得这个数列单调不降 数列中每个数为 -109-109 中的一个数 做法分析 先这样考 ...

随机推荐

  1. 流编辑器:sed

    一 简介:sed是一个精简的.非交互式的流式编辑器,它在命令行中输入编辑命令和指定文件名,然后在屏幕上查看输出.逐行读取文件内容到临时缓冲区,称为模式空间.接着用sed命令处理缓冲区内容,处理完之后, ...

  2. 如何开发一个maven插件

    maven是当下最流行的项目管理工具,其丰富的插件为我们的工作带来了很大的便利. 但是在一些情况下,开源的插件并不能完全满足我们的需求,我们需要自己创建插件,本文就从0开始带大家一起创建自己的插件. ...

  3. logback怎么写?分类输出日志到不同的文件

    此appender有顺序,最好不要乱调顺序,输出日志如下: drwxr-xr-x 2 root root 4096 Dec 3 00:00 2019-12-02drwxr-xr-x 2 root ro ...

  4. laravel5.5 如何创建Facades并使用

    laravel Facades概念略,自行百度. 如何创建Facades使用步骤1. 创建一个php文件,App\Utils\SmsSend.php.<?php namespace App\Ut ...

  5. [LeetCode题解]143. 重排链表 | 快慢指针 + 反转

    解题思路 找到右边链表,再反转右边链表,然后按左.右逐一合并 代码 /** * Definition for singly-linked list. * public class ListNode { ...

  6. python程序基础

    高级程序设计语言包括Python.C/C++.Java等 低级程序设计语言包括汇编语言和机器语言   Python是一种解释型语言,但为了提高运行效率,Python程序在 执行一次之后会自动生成扩展名 ...

  7. 灵活运用的@RequestParam和@RequestBody

    最近在编写项目的过程中,老出现前后端传递参数格式不一致.不统一的问题,对于一个已经快工作一年的Java程序员来说,实属不合格,所以我就下来好好研究了一下@RequestParam和@RequestBo ...

  8. Hash算法——加密解密说明

    MD5 pmd5-md5加密解密 加密类型识别工具 hash-identifier

  9. xss攻击与防范

    xss攻击方式以及防范 通常来说,网站一般都是有着,用户注册,用户登录,实名认证等等这些需要用户把信息录入数据库的接口 xss找的就是这种接口,他们可以在传递数据的时候,传递恶意的  script  ...

  10. 总结MathType中输入小于号的方法

    作为一款专业的公式编辑软件,MathType可谓是非常强大,先不说其编辑公式是多么的方便.迅速,但就打开软件界面,看到不可估算的数学符号有那么多,你就会感叹它的强大,竟然能把绝大部分的数学符号都汇聚于 ...