A. Inscribed Figures

分类讨论打表即可。

PS:这道题翻译有歧义。

这样稍微翻转一下,就可以是\(7\)个交点呀...(大概是我没看英文题干导致的惨案)

#include <cstdio>
#include <iostream>
using namespace std;
const int N = 110;
int n, a[N], ans = 0;
int d[3][3]{
{-1, 3, 4},
{3, -1, -1},
{4, -1, -1}
};
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; i++)
scanf("%d", a + i); for(int i = 2; i <= n; i++){
int res = d[a[i - 1] - 1][a[i] - 1];
if(i > 1 && i + 1 <= n && a[i + 1] == 2 && a[i] == 1 && a[i - 1] == 3) res = 3;
if(res == -1){
puts("Infinite");
return 0;
}else{
ans += res;
}
}
printf("Finite\n%d\n", ans);
return 0;
}

B. Ugly Pairs

将奇数字母\((char - 'a') \& 1\)与偶数字母分别分开来升序排序,设为\(A\)、\(B\)。

尝试\(AB\)或者\(BA\),若都不行则无解(注意,题有坑,\(za\)是可以的,而\(az\)不行)


证明:

\(A\)与\(B\)都满足\(str[i] <= str[i + 1] (1 <= i < len)\)

若\(A.end()\)不满足\(B.begin()\),反过来匹配也不行。则说明无论怎么拼,它们都是不严谨递增的。

则它们的开头与结尾是相邻的,它们相当于一个并行的状态,必须有一方是不严谨递增的重复字母且一方邻向。(否则不可能不严谨递增)

#include <cstdio>
#include <iostream>
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110;
char s[N];
int n, vis[N];
vector<char> A, B;
char inline pre(char c){
return 'a' + ((c - 'a' + 25) % 26);
}
char inline nxt(char c){
if(c == 'z') return '?';
return 'a' + ((c - 'a' + 1) % 26);
}
int main(){ int T; scanf("%d", &T);
while(T--){
A.clear(); B.clear();
scanf("%s", s + 1);
n = strlen(s + 1);
for(int i = 1; i <= n; i++){
if((s[i] - 'a') & 1) A.push_back(s[i]);
else B.push_back(s[i]);
}
sort(A.begin(), A.end());
sort(B.begin(), B.end());
if(A.empty() || B.empty()){
for(int i = 0; i < A.size(); i++)
putchar(A[i]);
for(int i = 0; i < B.size(); i++)
putchar(B[i]);
printf("\n");
}else if(pre(A.back()) != B[0] && nxt(A.back()) != B[0]){
for(int i = 0; i < A.size(); i++)
putchar(A[i]);
for(int i = 0; i < B.size(); i++)
putchar(B[i]);
printf("\n");
}else if(pre(B.back()) != A[0] && nxt(B.back()) != A[0]){
for(int i = 0; i < B.size(); i++)
putchar(B[i]);
for(int i = 0; i < A.size(); i++)
putchar(A[i]);
printf("\n");
}else puts("No answer");
}
return 0;
}

C. Match Points

发现答案具有单调性,既然有\(3\)个,那么一定有\(2\)对,可以二分答案。

\(check()\)函数的检查是一个贪心的过程,使\(x_i\)匹配\(x_{(n / 2) + i}\)这样是很明显最优的方案。


证明:

存在\(x_a <= x_b <= x_c <= x_d\)

若\((a, b),(c, d)\) 可匹配成功,那么\((a, c),(b, d)\)必定能匹配成功,反命题则不然。

那么\(x_b - x_a >= z\),也就是\(x_c >= x_b >= z + x_a\),换过来就是\(x_c - x_a >= z\)

\((b, d)\)的证明同理,所以一一匹配一定是最优的。

PS:写完了程序才发现可以直接\(O(n)\)求解,看了题解才知道自己太弱了...

#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 200010;
int n, z, x[N];
bool check(int m){
for(int i = 1; i <= m; i++)
if(x[n - m + i] - x[i] < z) return false;
return true;
}
int main(){
scanf("%d%d", &n, &z);
for(int i = 1; i <= n; i++)
scanf("%d", x + i);
sort(x + 1, x + 1 + n);
int l = 0, r = n / 2;
while(l < r){
int mid = (l + r + 1) >> 1;
if(check(mid)) l = mid;
else r = mid - 1;
}
printf("%d\n", l);
return 0;
}

D. 0-1-Tree

自闭,想不到什么好方法,\(dp\)死活想不出来...

计数问题,可以利用加法原理分开处理。

符合条件的点对\((u, v)\)有三种情况:

  1. 全部是\(0\)边
  2. 全部是\(1\)边
  3. 先经过一些\(0\)边,然后经过\(1\)边

对于情况\(1\),我们可以考虑让图仅存在\(0\)边,然后对于每个连通块,它的点对数量为:

\(size * (size - 1)\)。可以理解为每一个点可以找另外连通块的所有点,交换下来仍然成立。

对于情况\(2\),同理情况\(2\)。

对于情况\(3\),可以考虑找到一个截点\(x\),路径考虑为\(s -> x -> t\),\(s - > x\)上的路径全部为\(0\),\(x -> t\)的路径全部为\(1\)。这种情况,方案数为\((size_{x属于的0边连通块} - 1) * (size_{x属于的1边连通块} - 1)\),理解为在\(x\)属于的\(0\)边连通块中找一个点\(s(s != x)\) ,在\(1\)边同理。

对于上述所有操作,仅仅是集合之间的合并,可以用并查集维护。

#include <iostream>
#include <cstdio>
using namespace std;
typedef long long LL;
const int N = 200010, M = N << 1;
int n, f[N][2], size[N][2];
LL ans = 0;
int inline find(int x, int c){
return f[x][c] == x ? x : f[x][c] = find(f[x][c], c);
}
void merge(int a, int b, int c){
a = find(a, c), b = find(b, c);
if(a != b) f[a][c] = b, size[b][c] += size[a][c];
}
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; i++){
f[i][0] = f[i][1] = i;
size[i][0] = size[i][1] = 1;
}
for(int i = 1, u, v, w; i < n; i++){
scanf("%d%d%d", &u, &v, &w);
merge(u, v, w);
} for(int i = 1; i <= n; i++){
if(f[i][0] == i)
ans += (LL)size[i][0] * (size[i][0] - 1);
if(f[i][1] == i)
ans += (LL)size[i][1] * (size[i][1] - 1);
int p = find(i, 0), q = find(i, 1);
ans += (LL)(size[p][0] - 1) * (size[q][1] - 1);
}
printf("%lld\n", ans);
return 0;
}

Codeforces Edu Round 64 A-D的更多相关文章

  1. Codeforces70 | Codeforces Beta Round #64 | 瞎讲报告

    目录 前言 正文 A B C D E 前言 这个毒瘤的517 放了Div1 然后D题是昨天讲的动态凸包(啊喂!我还没来的及去写 结果自己想的是二分凸包 (当然没有写出来 写完前两题之后就愉快地弃疗 C ...

  2. Educational Codeforces Round 64 (Rated for Div. 2)题解

    Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...

  3. Educational Codeforces Round 64 部分题解

    Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...

  4. Educational Codeforces Round 64(ECR64)

    Educational Codeforces Round 64 CodeForces 1156A 题意:1代表圆,2代表正三角形,3代表正方形.给一个只含1,2,3的数列a,ai+1内接在ai内,求总 ...

  5. Educational Codeforces Round 64部分题解

    Educational Codeforces Round 64部分题解 A 题目大意:给定三角形(高等于低的等腰),正方形,圆,在满足其高,边长,半径最大(保证在上一个图形的内部)的前提下. 判断交点 ...

  6. Codeforces Beta Round #80 (Div. 2 Only)【ABCD】

    Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...

  7. Codeforces Beta Round #62 题解【ABCD】

    Codeforces Beta Round #62 A Irrational problem 题意 f(x) = x mod p1 mod p2 mod p3 mod p4 问你[a,b]中有多少个数 ...

  8. Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】

    Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...

  9. Codeforces Beta Round #13 C. Sequence (DP)

    题目大意 给一个数列,长度不超过 5000,每次可以将其中的一个数加 1 或者减 1,问,最少需要多少次操作,才能使得这个数列单调不降 数列中每个数为 -109-109 中的一个数 做法分析 先这样考 ...

随机推荐

  1. nginx&http 第三章 惊群

    惊群:概念就不解释了. 直接说正题:惊群问题一般出现在那些web服务器上,Linux系统有个经典的accept惊群问题,这个问题现在已经在内核曾经得以解决,具体来讲就是当有新的连接进入到accept队 ...

  2. 常见mysql后台线程

     1.IO THREAD  MySQL有很多后台线程 其中包括了负责IO的相关线程IO THREAD 1. 参数innodb_write_io_threads  写线程 默认四个,负责数据块的写入 2 ...

  3. Springboot 框架整理,建议做开发的都看看,整理的比较详细!

    什么是 Spring Boot? SpringBoot是Spring项目中的一个子工程,与我们所熟知的Spring-framework 同属于spring的产品,是用来简化 spring 初始搭建和开 ...

  4. [COCI2016-2017#1] Mag

    [COCI2016-2017#1] Mag 题解 题目TP门 题目描述 你将获得一棵由无向边连接的树.树上每个节点都有一个魔力值. 我们定义,一条路径的魔力值为路径上所有节点魔力值的乘积除以路径上的节 ...

  5. FL Studio中如何进行工具栏编辑

    菜单工具栏是我们使用FL Studio时经常需要使用的一个功能,那么,除了软件默认的菜单工具栏,我们应该如何编辑菜单工具栏呢? 图1:工具栏编辑 想要编辑更改默认菜单栏,我们只需要鼠标右键单击菜单工具 ...

  6. mac实用软件推荐 mac好用的软件

    终于入手了梦寐以求的苹果电脑,但却发现其操作系统与Windows大相径庭!不会使用怎么办?不用担心,我们可以借助软件的力量.一款实用的Mac软件不仅能够使你的工作效率显著提高,同时它还能帮助你更快地熟 ...

  7. C# redis集群批量操作之slot计算出16384个字符串

    引入一个大家都用的到的需求来说吧. 需求:要在三主三从的redis集群,存入数据,会对数据进行批量删除操作,数据要求要在redis集群负载均衡. 思路: 1.存入数据好办 1 var connect ...

  8. 由OptionalLong想到的拆装箱问题

    包装类型为null的时候时候拆箱会报空指针

  9. LaTeX中的浮动体

    浮动体代码及注释: 显示效果:

  10. win10 下安装 ubuntu 子系统的完全指北

    最近在搞 C++ 相关的东西,因为在 Linux 下开发会比较流畅舒适,而公司配的电脑都是 windows 的,之前都是在 vmware 中安装个 ubuntu 虚拟机,但这种有时候比有点卡顿.所以今 ...