把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

Input

第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。

Output

对输入的每组数据M和N,用一行输出相应的K。

Sample Input

1
7 3

Sample Output

8

题解+代码:

 1 /*
2 这道题两种做法,一种dfs,一种递推。这里用的递推法(递推法下面代码有注释这里就不说了)
3
4 下面说一下dfs做法,1*x1+2*x2+3*x3+......+m*xm=m意思就是,放1个苹果的盘子有x1个,放2个苹果的盘子有x2个.。。。。。
5 我们只需要枚举x1,x2,x3......xm的取值就行了,因为还有n个盘子的限制,所以dfs过程中传一个参数就行了
6 */
7 #include<stdio.h>
8 #include<string.h>
9 #include<iostream>
10 #include<algorithm>
11 #include<math.h>
12 #include<queue>
13 using namespace std;
14 int digui(int m,int n)
15 {
16 //递归出口就是当苹果没有了或者盘子就剩下了一个
17 if(n==1 || m==0) return 1;
18 if(m<n) return digui(m,m); //必定有n-m个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响。即if(n>m) f(m,n) = f(m,m)
19 else return digui(m,n-1)+digui(m-n,n); //这一行代码就保证了我们最后求出来的答案不会出现重复
20 //所有盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,不影响不同放法的数目,即f(m,n) = f(m-n,n).
21 //而总的放苹果的放法数目等于两者的和,即 f(m,n) =f(m,n-1)+f(m-n,n)
22 }
23 int main()
24 {
25 int t;
26 scanf("%d",&t);
27 while(t--)
28 {
29 int m,n;
30 scanf("%d%d",&m,&n);
31 printf("%d\n",digui(m,n));
32 }
33 return 0;
34 }

放苹果 POJ - 1664 递推的更多相关文章

  1. Number Sequence POJ - 1019 递推 数学

    题意 1 12 123 1234 12345 ....这样的序列 问第n位数字是几   是数字! 1-9! 思路:递推关系 主要是位数的计算   用a[i]=a[i-1]+(int)log10((do ...

  2. POJ 2229 递推

    Farmer John commanded his cows to search for different sets of numbers that sum to a given number. T ...

  3. POJ 1664 放苹果 (递推)

    题目链接:http://poj.org/problem?id=1664 dp[i][j]表示i个盘放j个苹果的方案数,dp[i][j] 可以由 dp[i - 1][j] 和 dp[i][j - i] ...

  4. POJ 1664 放苹果 (递推思想)

    原题链接:http://poj.org/problem?id=1664 思路:苹果m个,盘子n个.假设 f ( m , n ) 代表 m 个苹果,n个盘子有 f ( m , n ) 种放法. 根据 n ...

  5. poj 1664 放苹果(递推)

    题目链接:http://poj.org/problem? id=1664 放苹果 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions ...

  6. 递推(三):POJ中的三道递推例题POJ 1664、POJ 2247和POJ 1338

    [例9]放苹果(POJ 1664) Description 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. In ...

  7. poj 1664 放苹果 递归

    题目链接: http://poj.org/problem?id=1664 题目描述: 有n个苹果,m个盒子,盒子和苹果都没有顺序,盒子可以为空,问:有多少种放置方式? 解题思路: 当前有n个苹果,m个 ...

  8. poj 1664 放苹果 (划分数)

    题意:中文题目,不解释... 题解: 第一种方法是暴力深搜:枚举盘子1~n放苹果数量的所有情况,不需要剪枝:将每次枚举的情况,即每个盘的苹果数量,以字典序排序,然后存进set里 以此去重像" ...

  9. POJ 1664 放苹果

    放苹果 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24985   Accepted: 15908 Description ...

随机推荐

  1. LeetCode 二分查找模板 III

    模板 #3: int binarySearch(vector<int>& nums, int target){ if (nums.size() == 0) return -1; i ...

  2. linux下的文件类型

    在Linux中一切设备皆文件,首先来看一下Linux下的文件都有哪些分类,也就是文件类型 文件类型:普通文件(包括shell脚本,文档,音频,视频).目录文件.设备文件(又细分为字符设备文件和块设备文 ...

  3. MySQL全面瓦解16:存储过程相关

    概述 大多数SQL语句都是针对一个或多个表的单条语句.但并非所有业务都这么简单,经常会有复杂的操作需要多条语句才能完成. 比如用户购买一个商品,要删减库存表,要生成订单数据,要保存支付信息等等,他是一 ...

  4. 【Linux】CentOS7中修改中文字符集

    CentOS 7中字符集查看的方式是 locale -a   或者locale 如果想显示中文的话,应该修改为 LANG="zh_CN.UTF-8" 在命令行界面临时修改字符集的话 ...

  5. LeetCode572. 另一个树的子树

    题目 本题目一开始想要通过二叉树遍历KMP匹配,但看来实现比较复杂 不如直接暴力匹配,本题和LeetCode100.相同的树有共通之处 1 class Solution { 2 public: 3 b ...

  6. SDUST数据结构 - chap5 数组与广义表

    选择题:

  7. 爬虫学习(二)requests模块的使用

    一.requests的概述 requests模块是用于发送网络请求,返回响应数据.底层实现是urllib,而且简单易用,在python2.python3中通用,能够自动帮助我们解压(gzip压缩的等) ...

  8. Scrapy——將數據保存到MySQL數據庫

    Scrapy--將數據保存到MySQL數據庫 1. 在MySQL中創建數據庫表job_inf: 1 Create table job_inf( 2 id int(11) not null auto_i ...

  9. Linux系统设置 SSH 通过密钥登录

    我们一般使用 PuTTY 等 SSH 客户端来远程管理 Linux 服务器.但是,一般的密码方式登录,容易有密码被暴力破解的问题.所以,一般我们会将 SSH 的端口设置为默认的 22 以外的端口,或者 ...

  10. Certbot CA 证书 https

    certbot (base) a@test:~# certbot --help - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ...