2018-2019 ACM-ICPC, Asia Dhaka Regional Contest C.Divisors of the Divisors of An Integer (数论)
题意:求\(n!\)的每个因子的因子数.
题解:我们可以对\(n!\)进行质因数分解,这里可以直接用推论快速求出:https://5ab-juruo.blog.luogu.org/solution-p2043, 所以我们可以得到\(n!=p^{k1}_1*p^{k_2}_2*...*p^{k_n}_n\),然后根据约数定理,它的任意一个因子可以表示为\(n!=p^{a1}_1*p^{a_2}_2*...*p^{a_n}_n\ (0\le a_i\le k_i)\),我们将某一个质数\(p^{a_i}_i\)单独拿出来分析,\(a_i\)可以选的值有\(0,1,2,...,k_i\),所以\(p^{a_i}_i\)的因子\(p^{b_i}_i\)中的\(b_i\)可以选的值有\((0),(0,1),(0,1,2),...,(0,1,...,k_i)\),那么我们用等差数列求和即可得出\(p^{a_i}_i\)的因子数贡献为\(\frac{(k_i+1)*(k_i+2)}{2}\),那么我们就可以得出答案为\(\prod^{n}_{i=1}(\frac{(k_i+1)*(k_i+2)}{2})\).
代码:
int n;
int prime[N],cnt;
bool st[N]; void get_prime(){
for(int i=2;i<=1e6+10;++i){
if(!st[i]) prime[cnt++]=i;
for(int j=0;j<cnt && prime[j]<=(1e6+10)/i;++j){
st[i*prime[j]]=true;
if(i%prime[j]==0) break;
}
}
} int divide(int p,int x){
int res=0;
while(p){
res+=p/x;
p/=x;
}
return res;
} signed main() {
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
get_prime();
while(cin>>n){
if(n==0) break;
int ans=1;
for(int i=0;i<cnt && prime[i]<=n;++i){
int cur=divide(n,prime[i]);
ans=ans%mod*((cur+1)*(cur+2)/2)%mod;
}
cout<<ans<<'\n';
} return 0;
}
2018-2019 ACM-ICPC, Asia Dhaka Regional Contest C.Divisors of the Divisors of An Integer (数论)的更多相关文章
- ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków
ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków Problem A: Rubik’s Rect ...
- 2019-2020 ICPC, Asia Jakarta Regional Contest (Online Mirror, ICPC Rules, Teams Preferred)
2019-2020 ICPC, Asia Jakarta Regional Contest (Online Mirror, ICPC Rules, Teams Preferred) easy: ACE ...
- 2018-2019 ACM-ICPC, Asia Dhaka Regional Contest
目录 Contest Info Solutions B. Counting Inversion C. Divisors of the Divisors of An Integer E. Helping ...
- 2018-2019, ICPC, Asia Yokohama Regional Contest 2018 K
传送门:https://codeforces.com/gym/102082/attachments 题解: 代码: /** * ┏┓ ┏┓ * ┏┛┗━━━━━━━┛┗━━━┓ * ┃ ┃ * ┃ ━ ...
- 2018 ICPC Asia Jakarta Regional Contest
题目传送门 题号 A B C D E F G H I J K L 状态 Ο . . Ο . . Ø Ø Ø Ø . Ο Ο:当场 Ø:已补 . : 待补 A. Edit Distance Thin ...
- Gym - 101981K The 2018 ICPC Asia Nanjing Regional Contest K.Kangaroo Puzzle 暴力或随机
题面 题意:给你1个20*20的格子图,有的是障碍有的是怪,你可以每次指定上下左右的方向,然后所有怪都会向那个方向走, 如果2个怪撞上了,就融合在一起,让你给不超过5w步,让所有怪都融合 题解:我们可 ...
- Gym - 101981M The 2018 ICPC Asia Nanjing Regional Contest M.Mediocre String Problem Manacher+扩增KMP
题面 题意:给你2个串(长度1e6),在第一个串里找“s1s2s3”,第二个串里找“s4”,拼接后,是一个回文串,求方案数 题解:知道s1和s4回文,s2和s3回文,所以我们枚举s1的右端点,s1的长 ...
- Gym - 101981G The 2018 ICPC Asia Nanjing Regional Contest G.Pyramid 找规律
题面 题意:数一个n阶三角形中,有多少个全等三角形,n<=1e9 题解:拿到题想找规律,手画开始一直数漏....,最后还是打了个表 (打表就是随便定个点为(0,0),然后(2,0),(4,0), ...
- Gym - 101981I The 2018 ICPC Asia Nanjing Regional Contest I.Magic Potion 最大流
题面 题意:n个英雄,m个怪兽,第i个英雄可以打第i个集合里的一个怪兽,一个怪兽可以在多个集合里,有k瓶药水,每个英雄最多喝一次,可以多打一只怪兽,求最多打多少只 n,m,k<=500 题解:显 ...
- Gym - 101981D The 2018 ICPC Asia Nanjing Regional Contest D.Country Meow 最小球覆盖
题面 题意:给你100个三维空间里的点,让你求一个点,使得他到所有点距离最大的值最小,也就是让你找一个最小的球覆盖掉这n个点 题解:红书模板题,这题也因为数据小,精度也不高,所以也可以用随机算法,模拟 ...
随机推荐
- Java 多线程读取文件并统计词频 实例 出神入化的《ThreadPoolExecutor》
重在展示多线程ThreadPoolExecutor的使用,和线程同步器CountDownLatch,以及相关CAS的原子操作和线程安全的Map/队列. ThreadPool主线程 1 import j ...
- Assuming that agent dropped connection because of access permission
Assuming that agent dropped connection because of access permission
- 【Linux】dd命令进行磁盘备份
运用dd命令,将/dev/sdb磁盘中所有的数据全部备份到/dev/sdc磁盘上,需要的命令如下 dd if=/dev/sdb of=/dev/sdc bs=1024k 说明,if是需要备份的磁盘 ...
- 【ORA】ORA-27101快速处理方法
今天朋友的数据库出了问题,报错如下: 这个问题主要是是spfile和pfile文件不一致导致的, 生成一个pfile,完了用pfile启动数据库即可 SQL> create pfile '/ho ...
- linux系统图形化管理工具
webmin是一个非常好的图形化管理工具,提供了系统管理员对于linux系统的运维效率.对于那些记不住命令,新入门的新手真的是一个很好的工具呀,上图吧. 这是系统管理的首页,可以看到,CPU,内存.虚 ...
- C++旋转数组(三种解法详解)
题目描述 给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数. 附加要求 尽可能想出更多的解决方案,至少有三种不同的方法可以解决这个问题. 你可以使用空间复杂度为 O(1) 的 原地 ...
- 记一次Nginx反向代理500的排查记录
今天公司项目遇到一个奇怪的问题,记录一下. 注: 数据已经过脱敏处理,未暴露公司具体的IP等数据. TLDR; 项目简单介绍 用 Vue + ElementUI 实现的后台项目(以下简称:a-proj ...
- ChannelNets: 省力又讨好的channel-wise卷积,在channel维度进行卷积滑动 | NeurIPS 2018
Channel-wise卷积在channel维度上进行滑动,巧妙地解决卷积操作中输入输出的复杂全连接特性,但又不会像分组卷积那样死板,是个很不错的想法 来源:晓飞的算法工程笔记 公众号 论文: C ...
- ETL调优的一些分享(上)(转载)
ETL是构建数据仓库的重要一环.通过该过程用户将所需数据提取出来,并按照已定义的模型导入数据仓库.由于ETL是建立数据仓库的必经过程,它的效率将影响整个数据仓库的构建,因此它的有效调优具有很高的重要性 ...
- MySQL的sql_mode模式 解决数据Incorrect DECIMAL value: ‘0’ for column ” at row -1问题
https://blog.csdn.net/weiwoyonzhe/article/details/85177294?depth_1-utm_source=distribute.pc_relevant ...