题意:N*N的方格图每格有一个数值,要求从左上角每步往右或往下走到右下角,问走2次的最大和。

解法:走一次的很好想,而走2次,不可误以为先找到最大和的路,再找剩下的最大和的路就是正解。而应该认清动态规划的实质,定义为最佳解的状态,因此要走的2次都要涵括。

O(n^4)——f[i][j][k][l]表示分别走到(i,j)和(k,l)的最大和。每次从上一步分别走(下,下),(右,右),(右,下),(下,右)的状态推导就好了。f[i][j][k][l]=max(f[i-1][j][k-1][l],f[i][j-1][k][l-1],f[i][j-1][k-1][l],f[i-1][j][k][l-1])+a[i][j]+a[k][l]-((i==j&&k==l)?a[k][l]:0);

这样定义感觉很累赘,表示的是2次分别走可相同或不相同步数到相应坐标的状态。可以用同时走k步来定义状态,而且仔细想想,我们可以进一步思考出:由于只能往下和往右走,那么我们根据走到的坐标就可以知道总共和向下、向右各走了几步。反之,若已知总步数和向右走了几步,坐标也是可以知道的了。

于是可以这样定义状态:
O(n^3)——f[k][i][j]表示走k步2次同时各向右走了i步和j步的最大和。也是每次从上一步推。

注意——不能重复算同一格上的数。

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 int a[12][12],f[24][12][12];
8 int mmax(int x,int y) {return x>y?x:y;}
9 int mmin(int x,int y) {return x<y?x:y;}
10 int main()
11 {
12 int n;
13 scanf("%d",&n);
14 memset(a,0,sizeof(a));
15 while (1)
16 {
17 int x,y,d;
18 scanf("%d%d%d",&x,&y,&d);
19 if (!x&&!y&&!d) break;
20 a[x][y]=d;
21 }
22 memset(f,0,sizeof(f));
23 for (int k=1;k<=2*n;k++)
24 for (int i=1;i<=k;i++)
25 for (int j=1;j<=k;j++)
26 {
27 int mx=0,t;
28 mx=mmax(mx,f[k-1][i-1][j]);
29 mx=mmax(mx,f[k-1][i][j-1]);
30 mx=mmax(mx,f[k-1][i-1][j-1]);
31 mx=mmax(mx,f[k-1][i][j]);
32 if (i==j) t=a[k-i+1][i];
33 else t=a[k-i+1][i]+a[k-j+1][j];
34 f[k][i][j]=mx+t;
35 }
36 printf("%d",f[2*n][n][n]);
37 return 0;
38 }

【noi 2.6_8786】方格取数(DP)的更多相关文章

  1. NOIP2000方格取数[DP]

    题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...

  2. luogu 1004 方格取数 dp

    题目链接 题意 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示: A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 ...

  3. P1006 传纸条 (方格取数dp)

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运 ...

  4. neu1458 方格取数 dp解法

    题意: 有N * N个格子,每一个格子里有正数或者0,从最左上角往最右下角走,仅仅能向下和向右,一共走两次(即从左上角走到右下角走两趟),把全部经过的格子的数加起来,求最大值SUM,且两次假设经过同一 ...

  5. hiho 1617 - 方格取数 - dp

    题目链接 描述 给定一个NxN的方格矩阵,每个格子中都有一个整数Aij.小Hi和小Ho各自选择一条从左上角格子到右下角格子的路径,要求路径中每一步只能向右或向下移动,并且两条路径不能相交(除了左上右下 ...

  6. HDU 1565&1569 方格取数系列(状压DP或者最大流)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  7. HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]

    题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...

  8. HDU 1565 方格取数(1) 轮廓线dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) ...

  9. HDU1565 方格取数 &&uva 11270 轮廓线DP

    方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  10. hdu 1565 方格取数(1) 状态压缩dp

    方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

随机推荐

  1. 机器学习算法·KNN

    机器学习算法应用·KNN算法 一.问题描述 验证码目前在互联网上非常常见,从学校的教务系统到12306购票系统,充当着防火墙的功能.但是随着OCR技术的发展,验证码暴露出的安全问题越来越严峻.目前对验 ...

  2. 使用nodejs和express搭建http web服务

    目录 简介 使用nodejs搭建HTTP web服务 请求nodejs服务 第三方lib请求post 获取http请求的正文 Express和使用express搭建http web服务 express ...

  3. 【ORA】ORA-16629解决办法

    数据库向保护模式报告不同的保护级别"警告消息. 首先查看主备库的保护模式和保护级别 select protection_mode,protection_level from v$databa ...

  4. random模块常用函数

    random模块常用函数: from random import * # Random float: 0.0 <= x < 1.0 random() # Random float: 2.5 ...

  5. oracle字符集与乱码(转)

    作者:hcling97    http://blog.sina.com.cn/hcling97 2013年5月15日 转载请注明出处 字符集问题一直叫人头疼,究其原因还是不能完全明白其运作原理. 在整 ...

  6. 2021年首届.NET线下沙龙上海站 - 2021 .NET Meetup in Shanghai

    .NET Conf 2020 刚刚在苏州落下帷幕, .NET 开发者们的热情不减,来自五湖四海的朋友一起参加疫情之下的 .NET 盛会. 2021年上海第一场线下活动就要来了,快来加入我们一起学习.N ...

  7. EntityFramework Core如何映射动态模型?

    前言 本文我们来探讨下映射动态模型的几种方式,相信一部分童鞋项目有这样的需求,比如每天/每小时等生成一张表,此种动态模型映射非常常见,经我摸索,这里给出每一步详细思路,希望能帮助到没有任何头绪的童鞋, ...

  8. mongodb简单运用

    mongodb NoSQL(Not Only SQL),意思是"不仅仅是 SQL",指的是非关系型数据库,是对不同于传统的关系型数据库的数据库管理系统的统称. NoSQL 用于超大 ...

  9. JVM(五)手动解析.class文件

    一:不同进制之间的转换 二进制:逢2进1,数字0-1. 八进制:逢8进1,数字0-7.三位二进制表示一位八进制.三位二进制最大为111,最大为7. 十进制:逢10进1,数字0-9.四位二进制表示一位十 ...

  10. windows 系统 MySQL_5.6.21安装教程

      1.双击安装文件 mysql_installer_community_V5.6.21.1_setup.1418020972.msi,等待安装界面出现,见下图: 2.勾选:I accept thel ...