【Notes】现代图形学入门_01
跟着闫令琪老师的课程学习,总结自己学习到的知识点
计算机图形学概述
计算机图形学是一门将模型转化到屏幕上图像的一门基础学科,主要分为:Rasterization(光栅化)、Curves and Meshes(几何表示)、Ray Trancing(光线追踪)、Animation/Simulation(动画和模拟)
图形学与计算机视觉的简单界限:
(1) 计算机视觉是将屏幕上的图片转化为模型的过程;
(2) 计算机图形学是一门将模型转化到屏幕上图像的一门基础学科。
每个类别的知识框架如下图:
Rasterization(光栅化)
点乘和叉乘
Dot Multiplication
点乘在图形学的应用
(1) 求两个向量之间的夹角:
$$\cos(\theta) = \frac{(\vec{a} \cdot \vec{b})}{\lVert a \lVert \lVert b \lVert}$$
可以判断两个向量的距离、分向量与判断向量前后
(2) 投影
一个向量在另一个向量上的投影
Cross Product
[1] 右手坐标系
右手坐标系
叉乘在图形学中的应用
(1) 判断一个向量在另一个向量的左右,叉乘为正(与右手方向一致),则为目标在自己右方,反之亦然;
(2) 在性质(1)的基础上,如果一个点在包围他的所有线的同一侧,那么可以说明该点在这个图形内,反之亦然。
矩阵
矩阵转置与逆
(1) 矩阵A、B乘积的转置等于B的转置矩阵乘A的转置矩阵
\]
(2) 矩阵AB的逆等于B的逆乘A的逆
\]
基础变换(二维)
三维变化与二维变换矩阵类似
齐次坐标下的基础变换
Scale:
s_x &0 &0\\
0 & s_y & 0 \\
0&0&1
\end{pmatrix}\]
Rotation:
\cos\alpha& - \sin\alpha & 0 \\
\sin\alpha & \cos \alpha &0 \\
0&0&1
\end{pmatrix}\]
Translation:
1 & 0 & t_x \\
0 &1& t_y\\
0 &0& 1
\end{pmatrix}\]
组合变换(Compositon Transform)
矩阵变换把先变化的矩阵放到右边:矩阵运算是从右向左
四元数与旋转公式
四元数
罗德里格斯旋转公式
Rodrigue's Rotation Formula: Raotation by angle \(\alpha\) around axis \(\vec{n}\)
\begin{matrix} \underbrace{
\begin{pmatrix}
0 & -n_z & n_y \\
n_z & 0 & -n_x \\
-n_y & n_x & 0
\end{pmatrix}
} \\ N\end{matrix}\]
In the formula
I :Identity matrix
最后乘积的结果是一个3*3的矩阵
MVP变换
Model Transformation
引用博客:MVP变换
对模型进行模型变换时,需要注意坐标系是在世界坐标系原点。当绕模型中心进行变换时,首先要将模型的中心点移动到世界坐标系的原点,之后在进行模型变换,之后移回到原来的位置。
矩阵描述为:$$M=M_t^{-1} M_r M_s M_t$$
View/Camera Transformation
这个过程是将确定相机的位置:将相机的位置通过下面的过程移动到固定的点和方向。
(1) 相机的位置固定在世界坐标系的原点: \(\vec{e}\)
(2) 相机的朝向 \(-\vec{Z}\): \(\hat{g}\)
(3) 相机的向上方向\(\vec Y\): \(\hat t\)
基于上述过程,要求视图变换矩阵\(M_{view}\)分别求相机的平移矩阵\(T_{view}\)、旋转矩阵\(R_{view}\)
1 & 0 & 0 & -x_{\vec{e}} \\
0 & 1 & 0 & -y_{\vec{e}} \\
0 & 0 & 1 & -z_{\vec{e}} \\
0 & 0 & 0 & 1
\end{bmatrix}\]
求旋转矩阵时,直接求相机旋转到原点的矩阵不容易求解,但求原点到相机位置的旋转矩阵容易求。
所以先求原点到相机的旋转矩阵:Z To \(-\hat{g}\)、Y To \(\hat{t}\)、最后保证\(\vec{X}\) To \((\hat g \times \hat t)\) 朝向的方向,原因是保证符合右手坐标系。
x_{\hat{g} \times \hat{t}}&x_{t}&x_{-g}&0\\
y_{\hat{g} \times \hat{t}}&x_{t}&y_{-g}&0\\
z_{\hat{g} \times \hat{t}}&x_{t}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}\]
因为\(R_{view}^{-1}\)是正交矩阵,所以逆矩阵和旋转矩阵相同。
x_{\hat{g} \times \hat{t}}&y_{\hat{g} \times \hat{t}}&z_{\hat{g} \times \hat{t}}&0\\
x_{t}&y_{t}&z_{t}&0\\
x_{-g}&y_{-g}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}\]
所以
\begin{bmatrix}
x_{\hat{g} \times \hat{t}}&y_{\hat{g} \times \hat{t}}&z_{\hat{g} \times \hat{t}}&0\\
x_{t}&y_{t}&z_{t}&0\\
x_{-g}&y_{-g}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & -x_{\vec{e}} \\
0 & 1 & 0 & -y_{\vec{e}} \\
0 & 0 & 1 & -z_{\vec{e}} \\
0 & 0 & 0 & 1
\end{bmatrix}\]
Projection Transformation
个人理解投影变换的终极目的是让物体挤压在一个单位大小的平面(空间)内。原因先挖个坑。
Orthographic Projection
简单理解就是将物体的忽略z坐标,将模型通过Scale To [-1,-1]^2平面内。
真正的操作:
(1) 移动模型的位置到原点
(2) 缩放模型到空间[-1,1]^3中
Perspective Projection
正视投影的光线可以看成是一个立方体,如上图。透视投影的光线可以看成一个视锥,如下图。
透视变换可以分为两个步骤进行:
(1) 将视锥挤压到立方体内\(M_{persp->ortho}\)
(2) 将挤压后的视锥进行正视投影变换$M_{ortho}
挤压时的变换矩阵\(M_{persp->ortho}=\begin{bmatrix}
n&0&0&0\\
0&n&0&0\\
0&0&n+f&-nf\\
0 & 0&1&0
\end{bmatrix}\)
所以投影变换矩阵
\]
光栅化
Viewport Transform(视口变换)
将经过MVP变换后得到的单位空间模型变换到屏幕上,屏幕左边是左下角为原点。
所以视口变换的矩阵
\frac{width}{2}&0&0&\frac{width}{2}\\
0& \frac{height}{2}&0&\frac{height}{2}\\
0&0&1&0\\
0&0&0&1
\end{pmatrix}\]
Rasterization:Draw to Raster Displays
主要是将已经经过视口变换的模型画在屏幕空间上。
主要过程有:
(1) 采样
(2) 判断像素中心的位置与三角形的关系
采样
因为屏幕空间本身分辨率已经给出,所以像素点的数量也已经确认了,但是对我们可以通过以下方法提高效率,将可能有用的像素点选取出来:
1.Bounding Box
2.Incremental Triangle Traversal
判断像素中心的位置与三角形的关系
主要应用的原理是利用向量的叉乘判断点是否在三角形内。
伪代码如下
for(int x =0 ;x<xmax;x++)
for(int y = 0;y<ymax;y++)
image[x][y]=inside(tri,x+0.5,y+0.5)
反走样与深度缓冲
Artifacts(瑕疵) in Computer Graphics
产生Artifacts的分类和原因
(1) Jaggies(Staircase Pattern)
原因:空间采样产生的锯齿
(2) Mpire
原因:图片欠采样
(3) Wagon Wheel Effect
原因:时间上采样产生
解决办法
(1) 提高采样率:不实用
(2) 反走样
反走样
反锯齿的思路是先模糊,后采样,顺序不可以调换。
走样的原因:采样频率满足奈奎斯特采样定律,即采样频率高于二倍的最高频率。
滤波
频率图:越靠近中心点,表示的频率越低
滤波器的种类大致分为四类:
(1) 低通滤波:应用的效果是模糊
(2) 高通滤波:应用效果是提取边缘信息
(3) 带通滤波:也可以绘制出图像的边缘信息
卷积定理
时域卷积、频域相乘
时域卷积,频率图向两边拓展。
MSAA
通过MSAA方法可以首先模糊的效果。
步骤如下:
(1) 将每个像素点再进行细分
(2) 判断一个像素点里有几个细分的点在三角形内
(3) 将像素点根据在三角星内部细分点不同程度的着色,表示已经模糊。
上述过程的流程图如下:
上述过程在频率上的过程相当于低通滤波
Z-Buffer深度缓冲
每个像素都有一个z值代表像素点的深度、z值越大,说明该点越远。
Z-Buffer 算法伪代码
Initalize depth buffer to \(\infty\)
for(each trangle T)
for(each sample(x,y,z) in T)
if(z<zbuffer[x,y]) //closeet samnple so far
zbuffer[x,y]=z; //update color
framebuffer[x,y]=rgb; //update depth
总结
本周主要是完成光栅化的过程。其中比较重要的几个知识点:向量点乘和叉乘的几何意义、齐次坐标系下的矩阵变换、MVP变换、视口变换、光栅化、反走样、Z-Buffrer深度缓冲等等基础概念。
【Notes】现代图形学入门_01的更多相关文章
- 【Notes】现代图形学入门_02
跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 光栅化 着色(Shading) 在图形学中,着色的定义可 ...
- 图形学入门(3)——区域填充算法(region filling)
继续图形学之旅,我们已经解决了如何画线和画圆的问题,接下来要解决的是,如何往一个区域内填充颜色?对一个像素填充颜色只需调用SetPixel之类的函数就行了,所以这个问题其实就是:如何找到一个区域内的所 ...
- 图形学入门(1)——直线生成算法(DDA和Bresenham)
开一个新坑,记录从零开始学习图形学的过程,现在还是个正在学习的萌新,写的不好请见谅. 首先从最基础的直线生成算法开始,当我们要在屏幕上画一条直线时,由于屏幕由一个个像素组成,所以实际上计算机显示的直线 ...
- 64 计算机图形学入门(1)——OpenGL环境配置与图形流水线(图像管线)
0 引言 最近想学一下计算机图形学方面的知识,原因如下.目前本人接触了数字图像处理(opencv)以及点云处理(PCL)方面的知识,对从图像和点云中提取特征信息,并将特征转化为底层/中层语义信息有了一 ...
- 【Notes_2】现代图形学入门——向量与线性代数
向量与线性代数 点乘和叉乘 Dot Multiplication 点乘在图形学的应用 (1) 求两个向量之间的夹角: $$\cos(\theta) = \frac{(\vec{a} \cdot \ve ...
- 【Notes_1】现代图形学入门——计算机图形学概述
跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 计算机图形学概述 计算机图形学是一门将模型转化到屏幕上图 ...
- 【Notes_8】现代图形学入门——几何(基本表示方法、曲线与曲面)
几何 几何表示 隐式表示 不给出点的坐标,给数学表达式 优点 可以很容易找到点与几何之间的关系 缺点 找某特定的点很难 更多的隐式表示方法 Constructive Solid Geometry .D ...
- 《Shader入门精要》中MVP变换的Projection矩阵与《GAMES101图形学入门》中的区别
game101的透视投影的投影矩阵是这样的 正交投影是这样的 而shader入门精要的透视投影矩阵是这样子 正交投影矩阵是这样子 game101的透视投影是这样得到的 而正交投影的时候并没有假设中心点 ...
- Spring入门_01
<bean id="userAction" class="com.umgsai.spring.UserAction"> <property n ...
随机推荐
- .net core 和 WPF 开发升讯威在线客服与营销系统:使用线程安全的 BlockingCollection 实现高性能的数据处理
本系列文章详细介绍使用 .net core 和 WPF 开发 升讯威在线客服与营销系统 的过程.本产品已经成熟稳定并投入商用. 在线演示环境:https://kf.shengxunwei.com 注意 ...
- 数据中心网络技术新贵:VXLAN与园区网络虚拟化
摘要:为了应对传统数据中心网络对服务器虚拟化技术的限制,VXLAN技术应运而生. 1 概述 传统数据中心网络面临的问题 虚拟机规模受设备表项规格限制 在传统二层网络中,交换机通过查询MAC地址表来转发 ...
- AYIT-2020 609暑假集训第一周周赛题 A - A计划
可怜的公主在一次次被魔王掳走一次次被骑士们救回来之后,而今,不幸的她再一次面临生命的考验.魔王已经发出消息说将在T时刻吃掉公主,因为他听信谣言说吃公主的肉也能长生不老.年迈的国王正是心急如焚,告招天下 ...
- AtCoder Beginner Contest 188 C - ABC Tournament (模拟)
题意:有\(2^n\)个人站成一排比赛,刚开始每个人都和自己右边的人进行比赛,赢得人晋级下一轮(下标的小的在前面),不断重复这个过程,问最后拿到第二名的人的编号. 题解:根据题意,可以用vector直 ...
- codeforces578C. Weakness and Poorness
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- 3.PowerShell DSC核心概念
PowerShell DSC有三个核心概念 配置 配置是声明性的PowerShell 脚本,用于定义和配置资源实例. DSC 配置是幂等的. 资源 资源是 DSC 的"实现器"部分 ...
- Python进阶丨如何创建你的第一个Python元类?
摘要:通过本文,将深入讨论Python元类,其属性,如何以及何时在Python中使用元类. Python元类设置类的行为和规则.元类有助于修改类的实例,并且相当复杂,是Python编程的高级功能之一. ...
- Linux运维博客大全
系统 U盘安装Linux详细步骤_hanxh7的博客-CSDN博客_u盘安装linux 使用U盘安装linux系统 - lwenhao - OSCHINA 各厂商服务器存储默认管理口登录信息(默认IP ...
- Kubernets二进制安装(3)之准备签发证书环境
1.在mfyxw50机器上分别下载如下几个文件:cfssl.cfssl-json.cfssl-certinfo cfssl下载连接地址: https://pkg.cfssl.org/R1.2/cfss ...
- kubernetes进阶(六)k8s平滑升级
当我们遇到K8S有漏洞的时候,或者为了满足需求,有时候可能会需要升级或者降级版本, 为了减少对业务的影响,尽量选择在业务低谷的时候来升级: 首先准备好文件:我这里选择的是内网文件服务器上下载的,请自行 ...