摘自https://tech.meituan.com/2019/03/07/open-source-project-leaf.html

Leaf是美团基础研发平台推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”Leaf具备高可靠、低延迟、全局唯一等特点。目前已经广泛应用于美团金融、美团外卖、美团酒旅等多个部门。具体的技术细节,可参考此前美团技术博客的一篇文章:《Leaf美团分布式ID生成服务》。近日,Leaf项目已经在Github上开源:https://github.com/Meituan-Dianping/Leaf,希望能和更多的技术同行一起交流、共建。

Leaf特性

Leaf在设计之初就秉承着几点要求:

  1. 全局唯一,绝对不会出现重复的ID,且ID整体趋势递增。
  2. 高可用,服务完全基于分布式架构,即使MySQL宕机,也能容忍一段时间的数据库不可用。
  3. 高并发低延时,在CentOS 4C8G的虚拟机上,远程调用QPS可达5W+,TP99在1ms内。
  4. 接入简单,直接通过公司RPC服务或者HTTP调用即可接入。

Leaf诞生

Leaf第一个版本采用了预分发的方式生成ID,即可以在DB之上挂N个Server,每个Server启动时,都会去DB拿固定长度的ID List。这样就做到了完全基于分布式的架构,同时因为ID是由内存分发,所以也可以做到很高效。接下来是数据持久化问题,Leaf每次去DB拿固定长度的ID List,然后把最大的ID持久化下来,也就是并非每个ID都做持久化,仅仅持久化一批ID中最大的那一个。这个方式有点像游戏里的定期存档功能,只不过存档的是未来某个时间下发给用户的ID,这样极大地减轻了DB持久化的压力。

整个服务的具体处理过程如下:

  • Leaf Server 1:从DB加载号段[1,1000]。
  • Leaf Server 2:从DB加载号段[1001,2000]。
  • Leaf Server 3:从DB加载号段[2001,3000]。

用户通过Round-robin的方式调用Leaf Server的各个服务,所以某一个Client获取到的ID序列可能是:1,1001,2001,2,1002,2002……也可能是:1,2,1001,2001,2002,2003,3,4……当某个Leaf Server号段用完之后,下一次请求就会从DB中加载新的号段,这样保证了每次加载的号段是递增的。

Leaf数据库中的号段表格式如下:

+-------------+--------------+------+-----+-------------------+-----------------------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+-------------------+-----------------------------+
| biz_tag | varchar(128) | NO | PRI | | |
| max_id | bigint(20) | NO | | 1 | |
| step | int(11) | NO | | NULL | |
| desc | varchar(256) | YES | | NULL | |
| update_time | timestamp | NO | | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP |
+-------------+--------------+------+-----+-------------------+-----------------------------+

Leaf Server加载号段的SQL语句如下:

Begin
UPDATE table SET max_id=max_id+step WHERE biz_tag=xxx
SELECT tag, max_id, step FROM table WHERE biz_tag=xxx
Commit

整体上,V1版本实现比较简单,主要是为了尽快解决业务层DB压力的问题,而快速迭代出的一个版本。因而在生产环境中,也发现了些问题。比如:

  1. 在更新DB的时候会出现耗时尖刺,系统最大耗时取决于更新DB号段的时间。
  2. 当更新DB号段的时候,如果DB宕机或者发生主从切换,会导致一段时间的服务不可用。

Leaf双Buffer优化

为了解决这两个问题,Leaf采用了异步更新的策略,同时通过双Buffer的方式,保证无论何时DB出现问题,都能有一个Buffer的号段可以正常对外提供服务,只要DB在一个Buffer的下发的周期内恢复,就不会影响整个Leaf的可用性。

这个版本代码在线上稳定运行了半年左右,Leaf又遇到了新的问题:

  1. 号段长度始终是固定的,假如Leaf本来能在DB不可用的情况下,维持10分钟正常工作,那么如果流量增加10倍就只能维持1分钟正常工作了。
  2. 号段长度设置的过长,导致缓存中的号段迟迟消耗不完,进而导致更新DB的新号段与前一次下发的号段ID跨度过大。

Leaf动态调整Step

假设服务QPS为Q,号段长度为L,号段更新周期为T,那么Q * T = L。最开始L长度是固定的,导致随着Q的增长,T会越来越小。但是Leaf本质的需求是希望T是固定的。那么如果L可以和Q正相关的话,T就可以趋近一个定值了。所以Leaf每次更新号段的时候,根据上一次更新号段的周期T和号段长度step,来决定下一次的号段长度nextStep:

  • T < 15min,nextStep = step * 2
  • 15min < T < 30min,nextStep = step
  • T > 30min,nextStep = step / 2

至此,满足了号段消耗稳定趋于某个时间区间的需求。当然,面对瞬时流量几十、几百倍的暴增,该种方案仍不能满足可以容忍数据库在一段时间不可用、系统仍能稳定运行的需求。因为本质上来讲,Leaf虽然在DB层做了些容错方案,但是号段方式的ID下发,最终还是需要强依赖DB。

MySQL高可用

在MySQL这一层,Leaf目前采取了半同步的方式同步数据,通过公司DB中间件Zebra加MHA做的主从切换。未来追求完全的强一致,会考虑切换到MySQL Group Replication

现阶段由于公司数据库强一致的特性还在演进中,Leaf采用了一个临时方案来保证机房断网场景下的数据一致性:

  • 多机房部署数据库,每个机房一个实例,保证都是跨机房同步数据。
  • 半同步超时时间设置到无限大,防止半同步方式退化为异步复制。

Leaf监控

针对服务自身的监控,Leaf提供了Web层的内存数据映射界面,可以实时看到所有号段的下发状态。比如每个号段双buffer的使用情况,当前ID下发到了哪个位置等信息都可以在Web界面上查看。

Leaf Snowflake

Snowflake,Twitter开源的一种分布式ID生成算法。基于64位数实现,下图为Snowflake算法的ID构成图。

  • 第1位置为0。
  • 第2-42位是相对时间戳,通过当前时间戳减去一个固定的历史时间戳生成。
  • 第43-52位是机器号workerID,每个Server的机器ID不同。
  • 第53-64位是自增ID。

这样通过时间+机器号+自增ID的组合来实现了完全分布式的ID下发。

在这里,Leaf提供了Java版本的实现,同时对Zookeeper生成机器号做了弱依赖处理,即使Zookeeper有问题,也不会影响服务。Leaf在第一次从Zookeeper拿取workerID后,会在本机文件系统上缓存一个workerID文件。即使ZooKeeper出现问题,同时恰好机器也在重启,也能保证服务的正常运行。这样做到了对第三方组件的弱依赖,一定程度上提高了SLA。

未来规划

  • 号段加载优化:Leaf目前重启后的第一次请求还是会同步加载MySQL,之所以这么做而非服务初始化加载号段的原因,主要是MySQL中的Leaf Key并非一定都被这个Leaf服务节点所加载,如果每个Leaf节点都在初始化加载所有的Leaf Key会导致号段的大量浪费。因此,未来会在Leaf服务Shutdown时,备份这个服务节点近一天使用过的Leaf Key列表,这样重启后会预先从MySQL加载Key List中的号段。
  • 单调递增:简易的方式,是只要保证同一时间、同一个Leaf Key都从一个Leaf服务节点获取ID,即可保证递增。需要注意的问题是Leaf服务节点切换时,旧Leaf 服务用过的号段需要废弃。路由逻辑,可采用主备的模型或者每个Leaf Key 配置路由表的方式来实现。

关于开源

分布式ID生成的方案有很多种,Leaf开源版本提供了两种ID的生成方式:

  • 号段模式:低位趋势增长,较少的ID号段浪费,能够容忍MySQL的短时间不可用。
  • Snowflake模式:完全分布式,ID有语义。

读者可以按需选择适合自身业务场景的ID下发方式。希望美团的方案能给予大家一些帮助,同时也希望各位能够一起交流、共建。

Leaf项目Github地址:https://github.com/Meituan-Dianping/Leaf 。

美团关于分布式ID实践方案细节的更多相关文章

  1. 美团关于分布式ID实践方案

    在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识.如在美团点评的金融.支付.餐饮.酒店.猫眼电影等产品的系统中,数据日渐增长,对数据分库分表后需要有一个唯一ID来标识一条数据或消息,数据库的 ...

  2. 分布式id生成方案总结

    本文已经收录自 JavaGuide (60k+ Star[Java学习+面试指南] 一份涵盖大部分Java程序员所需要掌握的核心知识.) 本文授权转载自:https://juejin.im/post/ ...

  3. 美团技术分享:深度解密美团的分布式ID生成算法

    本文来自美团技术团队“照东”的分享,原题<Leaf——美团点评分布式ID生成系统>,收录时有勘误.修订并重新排版,感谢原作者的分享. 1.引言 鉴于IM系统中聊天消息ID生成算法和生成策略 ...

  4. 分布式ID生成方案汇总

    1.目标 1.1.全局唯一 不能出现重复的ID,全局唯一是最基本的要求. 1.2.趋势有序 业务上分页查询需求,排序需求,如果ID直接有序,则不必建立更多的索引,增加查询条件. 而且Mysql Inn ...

  5. 分布式ID生成方案总结整理

    目录 1.为什么需要分布式ID? 2.业务系统对分布式ID有什么要求? 3.分布式ID生成方案 3.1 UUID 3.2.数据库自增 3.3.号段模式 3.4. Redis实现 3.4. 雪花算法(S ...

  6. 一种基于Orleans的分布式Id生成方案

    基于Orleans的分布式Id生成方案,因Orleans的单实例.单线程模型,让这种实现变的简单,贴出一种实现,欢迎大家提出意见 public interface ISequenceNoGenerat ...

  7. Leaf——美团点评分布式ID生成系统 UUID & 类snowflake

    Leaf——美团点评分布式ID生成系统 https://tech.meituan.com/MT_Leaf.html

  8. 搞懂分布式技术12:分布式ID生成方案

    搞懂分布式技术12:分布式ID生成方案 ## 转自: 58沈剑 架构师之路 2017-06-25 一.需求缘起 几乎所有的业务系统,都有生成一个唯一记录标识的需求,例如: 消息标识:message-i ...

  9. 分布式ID生成方案

    系统唯一ID是设计一个系统的时候常常会遇到的问题,也常常为这个问题而纠结. 生成ID的方法有很多,适应不同的场景.需求以及性能要求.所以有些比较复杂的系统会有多个ID生成的策略. 0. 分布式ID要求 ...

随机推荐

  1. argis android sdk配置备忘一下

    ArcGIS RuntimeAndroid SDK100.1.0 1.在线配置(只有两处) 在project工程中的gradle添加 maven { url 'https://esri.bintray ...

  2. PyQt开发案例:结合QDial实现的QStackedWidget堆叠窗口程序例子及完整代码

    老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 一.案例说明 本案例是老猿在学习QStackedWidget中的一个测试案例,该案例使用QStack ...

  3. Syclover 第十次极客大挑战web题题解

    这次有空的时候报名参加了一下三叶草的招新比赛,比赛时间是一个月,题目都挺基础挺好玩的,在这里记一下自己的题解同时把自己没有做的题目也跟着writeup做一遍 第一题:cl4y:打比赛前先撸一只猫!: ...

  4. linux服务器性能分析只需1分钟

    背景: 现在的互联网公司,大多数时候应用服务都是部署在linux服务器上,那么当你的服务运行过程中出现了一些响应慢,资源瓶颈等疑似性能问题时,给你60秒,如何快速完成初步检测? 肯定有人会说用工具,公 ...

  5. Windows版 charles安装证书抓包网页HTTPS

    1.在Charles官网https://www.charlesproxy.com/download/下载,我这边下载的是免费体验版的. 2.安装好以后打开,配置Charles证书:选择 help--S ...

  6. 二、初步认识LoadRunner工具

    LoadRunner工具有三个组成分别是: Virtual User Generator:用户行为模拟:录制运行脚本. Controller:上面的录制一个用户操作,这个可以将其克隆成多个用户,模拟多 ...

  7. tp5使用PHPWord(下载引入/composer两种方式)

    PHPWORD使用文档 一:引入 tp5.0,tp5.1: 1:composer方式(推荐) a:根目录下执行:composer require phpoffice/phpword b:引入: use ...

  8. Java中instanceof注意的地方

    instanceof只能用于对象的判断,不能用于基本类型的判断,以下代码会编译不通过 'A' instanceof Character instanceof特有的规则:若左操作数是null,结果就直接 ...

  9. ECharts的基本使用与方法

    ECharts,一个使用 JavaScript 实现的开源可视化库,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器,底层依赖轻量级的矢量图形库 ZRender,提供直观,交互丰富,可高度 ...

  10. linux里用户权限:~$,/$,~#,/#的区别与含义

    $表明是非root用户登录,#表示是root用户登录,它们是终端shell的命令提示符几种常用终端的命令提示符 BASH:  root账户: # ,非root账户: $KSH:  root账户: # ...