美团关于分布式ID实践方案细节
摘自https://tech.meituan.com/2019/03/07/open-source-project-leaf.html
Leaf是美团基础研发平台推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”Leaf具备高可靠、低延迟、全局唯一等特点。目前已经广泛应用于美团金融、美团外卖、美团酒旅等多个部门。具体的技术细节,可参考此前美团技术博客的一篇文章:《Leaf美团分布式ID生成服务》。近日,Leaf项目已经在Github上开源:https://github.com/Meituan-Dianping/Leaf,希望能和更多的技术同行一起交流、共建。
Leaf特性
Leaf在设计之初就秉承着几点要求:
- 全局唯一,绝对不会出现重复的ID,且ID整体趋势递增。
- 高可用,服务完全基于分布式架构,即使MySQL宕机,也能容忍一段时间的数据库不可用。
- 高并发低延时,在CentOS 4C8G的虚拟机上,远程调用QPS可达5W+,TP99在1ms内。
- 接入简单,直接通过公司RPC服务或者HTTP调用即可接入。
Leaf诞生
Leaf第一个版本采用了预分发的方式生成ID,即可以在DB之上挂N个Server,每个Server启动时,都会去DB拿固定长度的ID List。这样就做到了完全基于分布式的架构,同时因为ID是由内存分发,所以也可以做到很高效。接下来是数据持久化问题,Leaf每次去DB拿固定长度的ID List,然后把最大的ID持久化下来,也就是并非每个ID都做持久化,仅仅持久化一批ID中最大的那一个。这个方式有点像游戏里的定期存档功能,只不过存档的是未来某个时间下发给用户的ID,这样极大地减轻了DB持久化的压力。
整个服务的具体处理过程如下:
- Leaf Server 1:从DB加载号段[1,1000]。
- Leaf Server 2:从DB加载号段[1001,2000]。
- Leaf Server 3:从DB加载号段[2001,3000]。
用户通过Round-robin的方式调用Leaf Server的各个服务,所以某一个Client获取到的ID序列可能是:1,1001,2001,2,1002,2002……也可能是:1,2,1001,2001,2002,2003,3,4……当某个Leaf Server号段用完之后,下一次请求就会从DB中加载新的号段,这样保证了每次加载的号段是递增的。
Leaf数据库中的号段表格式如下:
+-------------+--------------+------+-----+-------------------+-----------------------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+-------------------+-----------------------------+
| biz_tag | varchar(128) | NO | PRI | | |
| max_id | bigint(20) | NO | | 1 | |
| step | int(11) | NO | | NULL | |
| desc | varchar(256) | YES | | NULL | |
| update_time | timestamp | NO | | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP |
+-------------+--------------+------+-----+-------------------+-----------------------------+
Leaf Server加载号段的SQL语句如下:
Begin
UPDATE table SET max_id=max_id+step WHERE biz_tag=xxx
SELECT tag, max_id, step FROM table WHERE biz_tag=xxx
Commit
整体上,V1版本实现比较简单,主要是为了尽快解决业务层DB压力的问题,而快速迭代出的一个版本。因而在生产环境中,也发现了些问题。比如:
- 在更新DB的时候会出现耗时尖刺,系统最大耗时取决于更新DB号段的时间。
- 当更新DB号段的时候,如果DB宕机或者发生主从切换,会导致一段时间的服务不可用。
Leaf双Buffer优化
为了解决这两个问题,Leaf采用了异步更新的策略,同时通过双Buffer的方式,保证无论何时DB出现问题,都能有一个Buffer的号段可以正常对外提供服务,只要DB在一个Buffer的下发的周期内恢复,就不会影响整个Leaf的可用性。
这个版本代码在线上稳定运行了半年左右,Leaf又遇到了新的问题:
- 号段长度始终是固定的,假如Leaf本来能在DB不可用的情况下,维持10分钟正常工作,那么如果流量增加10倍就只能维持1分钟正常工作了。
- 号段长度设置的过长,导致缓存中的号段迟迟消耗不完,进而导致更新DB的新号段与前一次下发的号段ID跨度过大。
Leaf动态调整Step
假设服务QPS为Q,号段长度为L,号段更新周期为T,那么Q * T = L。最开始L长度是固定的,导致随着Q的增长,T会越来越小。但是Leaf本质的需求是希望T是固定的。那么如果L可以和Q正相关的话,T就可以趋近一个定值了。所以Leaf每次更新号段的时候,根据上一次更新号段的周期T和号段长度step,来决定下一次的号段长度nextStep:
- T < 15min,nextStep = step * 2
- 15min < T < 30min,nextStep = step
- T > 30min,nextStep = step / 2
至此,满足了号段消耗稳定趋于某个时间区间的需求。当然,面对瞬时流量几十、几百倍的暴增,该种方案仍不能满足可以容忍数据库在一段时间不可用、系统仍能稳定运行的需求。因为本质上来讲,Leaf虽然在DB层做了些容错方案,但是号段方式的ID下发,最终还是需要强依赖DB。
MySQL高可用
在MySQL这一层,Leaf目前采取了半同步的方式同步数据,通过公司DB中间件Zebra加MHA做的主从切换。未来追求完全的强一致,会考虑切换到MySQL Group Replication。
现阶段由于公司数据库强一致的特性还在演进中,Leaf采用了一个临时方案来保证机房断网场景下的数据一致性:
- 多机房部署数据库,每个机房一个实例,保证都是跨机房同步数据。
- 半同步超时时间设置到无限大,防止半同步方式退化为异步复制。
Leaf监控
针对服务自身的监控,Leaf提供了Web层的内存数据映射界面,可以实时看到所有号段的下发状态。比如每个号段双buffer的使用情况,当前ID下发到了哪个位置等信息都可以在Web界面上查看。
Leaf Snowflake
Snowflake,Twitter开源的一种分布式ID生成算法。基于64位数实现,下图为Snowflake算法的ID构成图。
- 第1位置为0。
- 第2-42位是相对时间戳,通过当前时间戳减去一个固定的历史时间戳生成。
- 第43-52位是机器号workerID,每个Server的机器ID不同。
- 第53-64位是自增ID。
这样通过时间+机器号+自增ID的组合来实现了完全分布式的ID下发。
在这里,Leaf提供了Java版本的实现,同时对Zookeeper生成机器号做了弱依赖处理,即使Zookeeper有问题,也不会影响服务。Leaf在第一次从Zookeeper拿取workerID后,会在本机文件系统上缓存一个workerID文件。即使ZooKeeper出现问题,同时恰好机器也在重启,也能保证服务的正常运行。这样做到了对第三方组件的弱依赖,一定程度上提高了SLA。
未来规划
- 号段加载优化:Leaf目前重启后的第一次请求还是会同步加载MySQL,之所以这么做而非服务初始化加载号段的原因,主要是MySQL中的Leaf Key并非一定都被这个Leaf服务节点所加载,如果每个Leaf节点都在初始化加载所有的Leaf Key会导致号段的大量浪费。因此,未来会在Leaf服务Shutdown时,备份这个服务节点近一天使用过的Leaf Key列表,这样重启后会预先从MySQL加载Key List中的号段。
- 单调递增:简易的方式,是只要保证同一时间、同一个Leaf Key都从一个Leaf服务节点获取ID,即可保证递增。需要注意的问题是Leaf服务节点切换时,旧Leaf 服务用过的号段需要废弃。路由逻辑,可采用主备的模型或者每个Leaf Key 配置路由表的方式来实现。
关于开源
分布式ID生成的方案有很多种,Leaf开源版本提供了两种ID的生成方式:
- 号段模式:低位趋势增长,较少的ID号段浪费,能够容忍MySQL的短时间不可用。
- Snowflake模式:完全分布式,ID有语义。
读者可以按需选择适合自身业务场景的ID下发方式。希望美团的方案能给予大家一些帮助,同时也希望各位能够一起交流、共建。
Leaf项目Github地址:https://github.com/Meituan-Dianping/Leaf 。
美团关于分布式ID实践方案细节的更多相关文章
- 美团关于分布式ID实践方案
在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识.如在美团点评的金融.支付.餐饮.酒店.猫眼电影等产品的系统中,数据日渐增长,对数据分库分表后需要有一个唯一ID来标识一条数据或消息,数据库的 ...
- 分布式id生成方案总结
本文已经收录自 JavaGuide (60k+ Star[Java学习+面试指南] 一份涵盖大部分Java程序员所需要掌握的核心知识.) 本文授权转载自:https://juejin.im/post/ ...
- 美团技术分享:深度解密美团的分布式ID生成算法
本文来自美团技术团队“照东”的分享,原题<Leaf——美团点评分布式ID生成系统>,收录时有勘误.修订并重新排版,感谢原作者的分享. 1.引言 鉴于IM系统中聊天消息ID生成算法和生成策略 ...
- 分布式ID生成方案汇总
1.目标 1.1.全局唯一 不能出现重复的ID,全局唯一是最基本的要求. 1.2.趋势有序 业务上分页查询需求,排序需求,如果ID直接有序,则不必建立更多的索引,增加查询条件. 而且Mysql Inn ...
- 分布式ID生成方案总结整理
目录 1.为什么需要分布式ID? 2.业务系统对分布式ID有什么要求? 3.分布式ID生成方案 3.1 UUID 3.2.数据库自增 3.3.号段模式 3.4. Redis实现 3.4. 雪花算法(S ...
- 一种基于Orleans的分布式Id生成方案
基于Orleans的分布式Id生成方案,因Orleans的单实例.单线程模型,让这种实现变的简单,贴出一种实现,欢迎大家提出意见 public interface ISequenceNoGenerat ...
- Leaf——美团点评分布式ID生成系统 UUID & 类snowflake
Leaf——美团点评分布式ID生成系统 https://tech.meituan.com/MT_Leaf.html
- 搞懂分布式技术12:分布式ID生成方案
搞懂分布式技术12:分布式ID生成方案 ## 转自: 58沈剑 架构师之路 2017-06-25 一.需求缘起 几乎所有的业务系统,都有生成一个唯一记录标识的需求,例如: 消息标识:message-i ...
- 分布式ID生成方案
系统唯一ID是设计一个系统的时候常常会遇到的问题,也常常为这个问题而纠结. 生成ID的方法有很多,适应不同的场景.需求以及性能要求.所以有些比较复杂的系统会有多个ID生成的策略. 0. 分布式ID要求 ...
随机推荐
- Python中sorted(iterable, *, key=None, reverse=False)函数参数定义中的独立星号(*)的含义
老猿在 <Python中函数的参数带星号是什么意思?>中介绍了Python函数中参数带星号的含义,而在实际使用和Python的标准文档中,会看到某写函数(如sorted(iterable, ...
- PyQt(Python+Qt)学习随笔:部件的inputMethodHints属性
inputMethodHints属性只对输入部件有效,输入法使用它来检索有关输入法应如何操作的提示,例如,如果设置了只允许输入数字的标志,则输入法可能会更改其可视组件,以反映只能输入数字.相关取值及含 ...
- secret_key伪造session来进行越权
从swpuctf里面的一道ctf题目来讲解secret_key伪造session来进行越权. 以前没有遇到过这种题目,这次遇到了之后查了一些资料把它做了出来,记录一下知识点. 参考资料 http:// ...
- pycharm 本地代码同步到github上
第一步, pycharm中setting-> Version Control -> Github -> addacount 如果账号密码登录不成功,就用token登录,参考下面这个博 ...
- .NET Core集成SkyWalking+SkyAPM-dotne实现分布式链路追踪
.NET Core集成SkyWalking+SkyAPM-dotnet实现分布式链路追踪 SkyWalking是一款APM(应用性能管理),其他的还有Cat.Zipkin.Pinpoint等. 随着微 ...
- javascript编写原则
1.不要在同一行声明多个变量2.使用===或!==来比较3.使用字面量的方式来创建对象.数组,替代new Array这种形式4.switch语句必须要带default分支5.fon-in循环中的变量, ...
- 题解-CF1401E Divide Square
题面 CF1401E Divide Square 给一个正方形平面边长为 \(10^6\),给 \(n\) 条横线段和 \(m\) 条竖线段,每条线段都与正方形边缘相交且一条直线上不会有两条线段,求被 ...
- MySQL技术内幕InnoDB存储引擎(六)——锁
什么是数据库的锁? 锁是数据库系统区别于文件系统的一个关键特性.锁机制用于管理对共享资源的并发访问.让数据库事务满足隔离性的要求. InnoDB 中锁的作用 不仅用于对数据进行并发访问,还还包括了缓冲 ...
- 用rundeck启动tomcat报错
报错如下Neither the JAVA_HOME nor the JRE_HOME environment variable is defined09:28:50 At least one of t ...
- Docker(七): 安装Loki
洛基(Loki),是北欧神话中的恶作剧和谎言之神,亦是火神.他是巨人法布提(Farbauti)和女巨人劳菲(Laufey)的儿子,阿萨神族主神奥丁(Odin)的义兄弟,虽然他比奥丁要年轻许多.但他的个 ...