Educational Codeforces Round 39 

D. Timetable

令\(dp[i][j]\)表示前\(i\)天逃课了\(j\)节课的情况下,在学校的最少时间

转移就是枚举第\(i\)天逃了\(x\)节课,然后取当天逃\(x\)节课情况下在学校的最小值即可

view code
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast,no-stack-protector")
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define endl "\n"
#define LL long long int
#define vi vector<int>
#define vl vector<LL>
#define all(V) V.begin(),V.end()
#define sci(x) scanf("%d",&x)
#define scl(x) scanf("%lld",&x)
#define scs(s) scanf("%s",s)
#define pii pair<int,int>
#define pll pair<LL,LL>
#ifndef ONLINE_JUDGE
#define cout cerr
#endif
#define cmax(a,b) ((a) = (a) > (b) ? (a) : (b))
#define cmin(a,b) ((a) = (a) < (b) ? (a) : (b))
#define debug(x) cerr << #x << " = " << x << endl
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
template <typename T> vector<T>& operator << (vector<T> &__container, T x){ __container.push_back(x); return __container; }
template <typename T> ostream& operator << (ostream &out, vector<T> &__container){ for(T _ : __container) out << _ << ' '; return out; }
const int MAXN = 2e5+7;
int n, m, k;
char s[MAXN];
void solve(){
sci(n); sci(m); sci(k);
vi f(k+1,n*m);
f[k] = 0;
for(int d = 1; d <= n; d++){
vi next_f(k+1,n*m);
scs(s+1);
vi A; for(int i = 1; i <= m; i++) if(s[i]=='1') A << i;
vi cost(A.size()+1,n*m);
for(int i = 0; i <= A.size(); i++){
if(i==A.size()) cost[i] = 0;
else for(int j = 0; j <= i; j++) cmin(cost[i],A[A.size() - 1 - i + j] - A[j] + 1);
}
for(int pre = 0; pre <= k; pre++) for(int cur = 0; cur <= min(pre,(int)A.size()); cur++) cmin(next_f[pre-cur],f[pre]+cost[cur]);
f.swap(next_f);
}
cout << *min_element(all(f)) << endl;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

E.  Largest Beautiful Number

考虑从后往前枚举每个位置,判断在这个位置之前全部相同,这个位置比原来小的情况下是否存在合法解即可

特判长度为奇数的情况和小于等于\(1xxxxxx1\)的情况

view code
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast,no-stack-protector")
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define endl "\n"
#define LL long long int
#define vi vector<int>
#define vl vector<LL>
#define all(V) V.begin(),V.end()
#define sci(x) scanf("%d",&x)
#define scl(x) scanf("%lld",&x)
#define scs(s) scanf("%s",s)
#define pii pair<int,int>
#define pll pair<LL,LL>
#ifndef ONLINE_JUDGE
#define cout cerr
#endif
#define cmax(a,b) ((a) = (a) > (b) ? (a) : (b))
#define cmin(a,b) ((a) = (a) < (b) ? (a) : (b))
#define debug(x) cerr << #x << " = " << x << endl
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
template <typename T> vector<T>& operator << (vector<T> &__container, T x){ __container.push_back(x); return __container; }
template <typename T> ostream& operator << (ostream &out, vector<T> &__container){ for(T _ : __container) out << _ << ' '; return out; }
const int MAXN = 2e5+7;
int n;
string s;
void solve(){
cin >> s;
function<bool(void)>check = [&](){
string str(s.size(),'0');
str.front() = str.back() = '1';
return str >= s;
};
if(s.size()&1 or check()){
for(int i = 1; i <= (s.size()&1 ? s.size() - 1 : s.size() - 2); i++) cout << 9;
cout << endl; return;
}
vi cnt(10,0);
for(int i = 0; i < s.size(); i++) cnt[s[i]-'0'] ^= 1;
for(int i = s.size() - 1; ~i; i--){
cnt[s[i]-'0'] ^= 1;
for(char c = s[i] - 1; c >= '0'; c--){
cnt[c-'0'] ^= 1;
int tot = accumulate(all(cnt),0);
if(tot>s.size()-i-1){
cnt[c-'0'] ^= 1;
continue;
}
string str(s);
s[i] = c;
int cur = i;
for(int j = 0; j < s.size()-i-1-tot; j++) s[++cur] = '9';
for(int j = 9; ~j; j--) if(cnt[j]) s[++cur] = j + '0';
cout << s << endl;
return;
}
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
int tt; for(cin >> tt; tt--; solve());
return 0;
}

F. Fibonacci String Subsequences

\(dp[i][l][r]\)表示\(f(i)\)中子串\(s[l:r]\)以子序列的方式出现的次数,考虑转移

对于一般情况,可以考虑把\(s[l:r]\)分成\(s[l:k]\)和\(s[k+1:r]\),然后分别在\(f(i-1)\)和\(f(i-2)\)中找

其次考虑\(s[l:r]\)全在\(f(i-1)\)或\(f(i-2)\)中,如果\(r=n-1\),那么在\(f(i-1)中找到\)\(s[l:r]\)出现次数之后由于后面可以随便选,乘上\(2^{fib(i-2)}\)即可,否则只算左边一部分,对于\(l=0\)的情况类似处理即可

view code
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast,no-stack-protector")
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define endl "\n"
#define LL long long int
#define vi vector<int>
#define vl vector<LL>
#define all(V) V.begin(),V.end()
#define sci(x) scanf("%d",&x)
#define scl(x) scanf("%lld",&x)
#define scs(s) scanf("%s",s)
#define pii pair<int,int>
#define pll pair<LL,LL>
#ifndef ONLINE_JUDGE
#define cout cerr
#endif
#define cmax(a,b) ((a) = (a) > (b) ? (a) : (b))
#define cmin(a,b) ((a) = (a) < (b) ? (a) : (b))
#define debug(x) cerr << #x << " = " << x << endl
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
template <typename T> vector<T>& operator << (vector<T> &__container, T x){ __container.push_back(x); return __container; }
template <typename T> ostream& operator << (ostream &out, vector<T> &__container){ for(T _ : __container) out << _ << ' '; return out; }
const int MAXN = 2e2+7;
const int MOD = 1e9+7;
LL ksm(LL a, LL b){
LL ret = 1;
while(b){
if(b&1) ret = ret * a % MOD;
b >>= 1;
a = a * a % MOD;
}
return ret;
}
int n, x, fib[MAXN], f[MAXN][MAXN][MAXN];
string s;
int dp(int x, int l, int r){
int &ret = f[x][l][r];
if(~ret) return ret;
if(x==0) return (ret = ((l==r) and s[l]=='0'));
if(x==1) return (ret = ((l==r) and s[l]=='1'));
ret = 0;
if(r==n-1) ret = (ret + 1ll * dp(x-1,l,r) * ksm(2,fib[x-2])) % MOD;
else ret = (ret + 1ll * dp(x-1,l,r)) % MOD;
if(l==0) ret = (ret + 1ll * dp(x-2,l,r) * ksm(2,fib[x-1])) % MOD;
else ret = (ret + 1ll * dp(x-2,l,r)) % MOD;
for(int i = l; i < r; i++) ret = (ret + 1ll * dp(x-1,l,i) * dp(x-2,i+1,r)) % MOD;
return ret;
}
void solve(){
cin >> n >> x >> s;
fib[0] = fib[1] = 1;
for(int i = 2; i < MAXN; i++) fib[i] = (fib[i-1] + fib[i-2]) % (MOD - 1);
memset(f,255,sizeof(f));
cout << dp(x,0,n-1) << endl;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

G. Almost Increasing Array

假设没有删一个数的条件的话,就是把原序列\(A\)中的所有\(A[i]\)变成\(A[i]-i\),然后算最长非降子序列

现在考虑枚举删掉的数为\(A[k]\),那么对于\(k\)之前的数\(A[i]\)来说,需要减去\(i\),对于\(k\)之后的数\(A[j]\)来说,需要减去\(j-1\)

那么之需要知道以\(k-1\)为结尾的最长非降子序列的长度和大于\(k\)的部分中起始值大于等于\(A[k-1]\)的最长非降子序列即可

那么可以用线段树来维护

view code
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast,no-stack-protector")
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define endl "\n"
#define LL long long int
#define vi vector<int>
#define vl vector<LL>
#define all(V) V.begin(),V.end()
#define sci(x) scanf("%d",&x)
#define scl(x) scanf("%lld",&x)
#define scs(s) scanf("%s",s)
#define pii pair<int,int>
#define pll pair<LL,LL>
#ifndef ONLINE_JUDGE
#define cout cerr
#endif
#define cmax(a,b) ((a) = (a) > (b) ? (a) : (b))
#define cmin(a,b) ((a) = (a) < (b) ? (a) : (b))
#define debug(x) cerr << #x << " = " << x << endl
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
template <typename T> vector<T>& operator << (vector<T> &__container, T x){ __container.push_back(x); return __container; }
template <typename T> ostream& operator << (ostream &out, vector<T> &__container){ for(T _ : __container) out << _ << ' '; return out; }
const int MAXN = 4e5+7;
int n, A[MAXN];
struct SegmentTree{
int l[MAXN<<2], r[MAXN<<2], maxx[MAXN<<2];
#define ls(rt) rt << 1
#define rs(rt) rt << 1 | 1
#define pushup(rt) maxx[rt] = max(maxx[ls(rt)],maxx[rs(rt)])
void build(int L, int R, int rt = 1){
l[rt] = L; r[rt] = R;
maxx[rt] = 0;
if(L+1==R) return;
int mid = (L + R) >> 1;
build(L,mid,ls(rt)); build(mid,R,rs(rt));
}
void modify(int pos, int x, int rt = 1){
if(l[rt] + 1 == r[rt]){
maxx[rt] = x;
return;
}
int mid = (l[rt] + r[rt]) >> 1;
if(pos<mid) modify(pos,x,ls(rt));
else modify(pos,x,rs(rt));
pushup(rt);
}
int qmax(int L, int R, int rt = 1){
if(L>=r[rt] or l[rt]>=R) return 0;
if(L<=l[rt] and r[rt]<=R) return maxx[rt];
return max(qmax(L,R,ls(rt)),qmax(L,R,rs(rt)));
}
}ST;
int f[MAXN];
void solve(){
sci(n);
vi vec;
for(int i = 1; i <= n; i++) sci(A[i]), A[i] -= i, vec << A[i] << A[i] + 1;
sort(all(vec)); vec.erase(unique(all(vec)),vec.end());
auto ID = [&](int x){ return lower_bound(all(vec),x) - vec.begin() + 1; };
ST.build(0,vec.size()+1);
for(int i = 1; i <= n; i++){
int x = ID(A[i]);
f[i] = ST.qmax(0,x+1) + 1;
ST.modify(x,f[i]);
}
int ret = f[n-1];
ST.build(0,vec.size()+1);
for(int i = n; i >= 2; i--){
ret = max(ret,f[i-1]+ST.qmax(ID(A[i-1]),vec.size()+1));
int x = ID(A[i]+1);
ST.modify(x,ST.qmax(x,vec.size()+1)+1);
}
cmax(ret,ST.qmax(0,vec.size()+1));
cout << n - 1 - ret << endl;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

Educational Codeforces Round 39的更多相关文章

  1. Educational Codeforces Round 39 (Rated for Div. 2) G

    Educational Codeforces Round 39 (Rated for Div. 2) G 题意: 给一个序列\(a_i(1 <= a_i <= 10^{9}),2 < ...

  2. #分组背包 Educational Codeforces Round 39 (Rated for Div. 2) D. Timetable

    2018-03-11 http://codeforces.com/contest/946/problem/D D. Timetable time limit per test 2 seconds me ...

  3. Educational Codeforces Round 39 (Rated for Div. 2) 946E E. Largest Beautiful Number

    题: OvO http://codeforces.com/contest/946/problem/E CF 946E 解: 记读入串为 s ,答案串为 ans,记读入串长度为 len,下标从 1 开始 ...

  4. Educational Codeforces Round 39 (Rated for Div. 2) B. Weird Subtraction Process[数论/欧几里得算法]

    https://zh.wikipedia.org/wiki/%E8%BC%BE%E8%BD%89%E7%9B%B8%E9%99%A4%E6%B3%95 取模也是一样的,就当多减几次. 在欧几里得最初的 ...

  5. codeforces Educational Codeforces Round 39 (Rated for Div. 2) D

    D. Timetable time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  6. Educational Codeforces Round 39 Editorial B(Euclid算法,连续-=与%=的效率)

    You have two variables a and b. Consider the following sequence of actions performed with these vari ...

  7. [Educational Codeforces Round 16]E. Generate a String

    [Educational Codeforces Round 16]E. Generate a String 试题描述 zscoder wants to generate an input file f ...

  8. [Educational Codeforces Round 16]D. Two Arithmetic Progressions

    [Educational Codeforces Round 16]D. Two Arithmetic Progressions 试题描述 You are given two arithmetic pr ...

  9. [Educational Codeforces Round 16]C. Magic Odd Square

    [Educational Codeforces Round 16]C. Magic Odd Square 试题描述 Find an n × n matrix with different number ...

随机推荐

  1. 【剑指 Offer】09.用两个栈实现队列

    题目描述 用两个栈实现一个队列.队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead , 分别完成在队列尾部插入整数和在队列头部删除整数的功能.(若队列中没有元素,del ...

  2. 计算机考研复试真题 a+b(大数加法)

    题目描述 实现一个加法器,使其能够输出a+b的值. 输入描述: 输入包括两个数a和b,其中a和b的位数不超过1000位. 输出描述: 可能有多组测试数据,对于每组数据, 输出a+b的值. 示例1 输入 ...

  3. redis持久化怎么选?成年人从来不做选择...

    前言 面试官:你知道 redis 是的怎么做持久化的吗? 我:我知道 redis 有两种方式,一种是 RDB,一种是 AOF. 面试官:那这两种方式具体是怎么做的,它们的区别是什么,生产环境中到底应该 ...

  4. xtrabackup_binlog_info

    文件保存了备份结束时刻binlog的名称和位置

  5. 【Linux】linux中用vim来比较文件内容不同

    1. 使用vim的比较模式打开两个文件: vim -d file1 file2 或 vimdiff file1 file2 2. 如果已经打开了文件file1,再打开另一个文件file2进行比较: : ...

  6. 大文件上传FTP

    需求 将本地大文件通过浏览器上传到FTP服务器. 原有方法 将本地文件整个上传到浏览器,然后发送到node服务器,最后由node发送到FTP服务器. 存在问题 浏览器缓存有限且上传速率受网速影响,当文 ...

  7. 为什么会有 AtomicReference ?

    我把自己以往的文章汇总成为了 Github ,欢迎各位大佬 star https://github.com/crisxuan/bestJavaer 我们之前了解过了 AtomicInteger.Ato ...

  8. 阿里云 RTC QoS 屏幕共享弱网优化之若干编码器相关优化

    屏幕共享是视频会议中使用频率最高的功能之一,但在实际场景中用户所处网络环境复杂,常遇到丢包或者拥塞的情况,所以如何优化弱网环境下的用户体验也成为了音视频通信中重要的一环.本文主要分享阿里云 RTC Q ...

  9. vue-cli3x4x修改本地端口port

    一.推荐方法 "scripts": { "serve": "vue-cli-service serve --port 3000", &quo ...

  10. Django-html文件实例

    1.实例1,登陆界面 <!DOCTYPE html> <head> <meta http-equiv="content-type" content=& ...