题意:构造一个$n*m$矩阵 使得每个元素和上下左右的xor值=0

题解:设第一行的每个元素值为未知数 可以依次得到每一行的值

   然后把最后一行由题意条件 得到$m$个方程 高斯消元解一下 bitset写起来比较方便

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <bitset>
using namespace std;
const int MAXN = 45; int n, m;
bitset<MAXN> a[MAXN][MAXN];
bitset<MAXN> b[MAXN];
int ans[MAXN]; int dx[] = {-1, -1, -1, -2};
int dy[] = {-1, 0, 1, 0}; bool check(int x, int y) {
if(x >= 1 && x <= n && y >= 1 && y <= m) return true;
return false;
} void gauss() {
for(int i = 1, now = 1; i <= m && now <= m; now++) {
for(int j = i; j <= m; j++) {
if(b[j][now]) {
std::swap(b[j], b[i]);
break;
}
}
if(!b[i][now]) ans[now] = 1;
for(int j = i + 1; j <= m; j++) {
if(b[j][now]) {
b[j] ^= b[i];
}
}
i++;
} for(int i = m; i >= 1; i--) {
for(int j = i + 1; j <= m; j++) {
if(b[i][j]) {
ans[i] ^= ans[j];
}
}
}
} int main() {
scanf("%d%d", &n, &m); for(int i = 1; i <= m; i++) a[1][i][i] = 1;
for(int i = 2; i <= n; i++)
for(int j = 1; j <= m; j++) {
for(int k = 0; k < 4; k++) {
int nx = i + dx[k];
int ny = j + dy[k];
if(check(nx, ny)) {
a[i][j] ^= a[nx][ny];
}
}
} for(int i = 1; i <= m; i++) {
b[i] = a[n][i];
if(n - 1 >= 1) b[i] ^= a[n - 1][i];
if(i - 1 >= 1) b[i] ^= a[n][i - 1];
if(i + 1 <= m) b[i] ^= a[n][i + 1];
}
gauss(); for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
int res = 0;
for(int t = 1; t <= m; t++) {
if(a[i][j][t]) res ^= ans[t];
}
if(j != m) printf("%d ", res);
else printf("%d\n", res);
}
}
return 0;
}

P3164 [CQOI2014]和谐矩阵(高斯消元 + bitset)的更多相关文章

  1. BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)

    Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本 身,及他上下左右的4个元素(如果存在). 给定矩阵的行数和列数,请计算并输 ...

  2. BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )

    偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...

  3. P3164 [CQOI2014]和谐矩阵

    P3164 [CQOI2014]和谐矩阵 乱写能AC,暴力踩标程(雾 第一眼 诶这题能暴力枚举2333!!! 第二眼 诶这题能高斯消元!那只需要把每个位置的数给设出来就能够列方程了!然后就可以\(O( ...

  4. [SDOI2010]外星千足虫 题解 高斯消元+bitset简介

    高斯消元 + bitset 简介: 高斯消元其实就是以加减消元为核心求唯一解.这道题还是比较裸的,可以快速判断出来.我们将每一只虫子看作一个未知数,这样根据它给出的 m 组方程我们可以高斯消元得出每一 ...

  5. bzoj 1923 [Sdoi2010]外星千足虫(高斯消元+bitset)

    1923: [Sdoi2010]外星千足虫 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 634  Solved: 397[Submit][Status ...

  6. BZOJ_1923_[Sdoi2010]外星千足虫_高斯消元+bitset

    BZOJ_1923_[Sdoi2010]外星千足虫_高斯消元 Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结 ...

  7. 矩阵&&高斯消元

    矩阵运算: \(A\times B\)叫做\(A\)左乘\(B\),或者\(B\)右乘\(A\). 行列式性质: \(1.\)交换矩阵的两行(列),行列式取相反数. \(2.\)某一行元素都\(\ti ...

  8. POJ 1830 开关问题 【01矩阵 高斯消元】

    任意门:http://poj.org/problem?id=1830 开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1 ...

  9. 【Luogu】P3389高斯消元模板(矩阵高斯消元)

    题目链接 高斯消元其实是个大模拟qwq 所以就着代码食用 首先我们读入 ;i<=n;++i) ;j<=n+;++j) scanf("%lf",&s[i][j]) ...

随机推荐

  1. Java 设置Excel条件格式(高亮条件值、应用单元格值/公式/数据条等类型)

    概述 在Excel中,应用条件格式功能可以在很大程度上改进表格的设计和可读性,用户可以指定单个或者多个单元格区域应用一种或者多种条件格式.本篇文章,将通过Java程序示例介绍条件格式的设置方法,设置条 ...

  2. Java API 操作HBase Shell

    HBase Shell API 操作 创建工程 本实验的环境实在ubuntu18.04下完成,首先在改虚拟机中安装开发工具eclipse. 然后创建Java项目名字叫hbase-test 配置运行环境 ...

  3. Tomcat的整体架构

    Tomcat通过连接器和容器这两个核心组件完成整体工作,连接器负责处理socket连接和网络字节流与Request和Response对象的转化:容器负责加载和管理Servlet,以及具体处理Reque ...

  4. 【Linux】if中的逻辑运算符怎么在linux的帮助中看到

    今天在写shell的时候,突然想查看下if相关的一些逻辑运算的,像-f -d之类的这种 于是man if  或者if --help 可是返回的信息却都无济于事,一点帮助都没有 回想一下,if中调的判断 ...

  5. ctfhub技能树—信息泄露—备份文件下载—bak文件

    打开靶机 查看页面信息 继续使用dirsearch进行扫描 python3 dirsearch.py -u http://challenge-d4234042e1d43e96.sandbox.ctfh ...

  6. 跨平台导PDF,结合wkhtmltopdf很顺手

    前言 好东西要分享,之前一直在使用wkhtmltopdf进行pdf文件的生成,常用的方式就是先安装wkhtmltopdf,然后在程序中用命令的方式将对应的html生成pdf文件,简单而且方便:但重复的 ...

  7. 记一次 RocketMQ broker 因内存不足导致的启动失败

    原创:西狩 编写日期 / 修订日期:2020-01-12 / 2020-01-12 版权声明:本文为博主原创文章,遵循 CC BY-SA-4.0 版权协议,转载请附上原文出处链接和本声明. 背景 该小 ...

  8. Linux学习安装

    Linux学习安装 服务器指的是网络中能对其他机器提供某些服务的计算机系统,相对普通PC, 服务器指的是高性能计算机,稳定性.安全性要求更高 linux安装学习 1.虚拟机 一台硬件的机器 安装vmw ...

  9. 《awk中文手册》-本人参考官方手册翻译

    01. 简介 AWK是一个文本(面向行和列)处理工具,同时它也是一门脚本语言. AWK其名称得自于它的创始人 Alfred Aho .Peter Weinberger 和 Brian Kernigha ...

  10. 【python刷题】LRU

    什么是LRU? LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰.该算法赋予每个页面一个访问字段,用来记录一个页面自上次 ...