本文是在windows10上安装了CPU版本的Mindspore,并在mindspore的master分支基础上使用LeNet网络训练MNIST数据集,实践已训练成功,此文为记录过程中的出现问题;
(据说此时mindspore的r0.7版本上是直接执行成功的)

【1】首先使用conda activate mindspore 进入mindspore虚拟环境

【2】再切入mindspore中lenet网络的train.py所在目录 D:\gitee\mindspore\model_zoo\official\cv\lenet

【3】执行训练 python train.py --device-target=CPU (因为代码里默认使用的训练设备为Ascend,需要手动设置 --device_targetCPU

  • 问题一 No module named 'mindspore.dataset.vision’

报错:文件 D:\gitee\mindspore\model_zoo\official\cv\lenet\src\dataset.py 引入模块import mindspore.dataset.version.c_transforms as CV 错误;

原因:查看发现系统 miniconda3的mindspore环境中 在\dataset 和 \version文件夹中还有一层 \transforms


解决:修改dataset.py 文件中模块引用的位置;

import mindspore.dataset.transforms.vision.c_transforms as CV
from mindspore.dataset.transforms.vision import Inter

  

保存文件重新执行命令 python train.py --device-target=CPU

  • 问题二 ImportError: cannot import name ‘set_seed’ from 'mindspore.common’


报错:文件train.py中导入set_seed模块出错

原因: C:\Users\86183\miniconda3\envs\mindspore\Lib\site-packages\mindspore\common\__init__.py 文件中没有set_seed模块(也即common文件下没有set_seed.py文件)

解决:在train.py 中将以下两条语句注释掉

from mindspore.common import set_seed

set_seed(1)

  

保存文件重新执行命令 python train.py --device-target=CPU

  • 问题三 ValueError: The folder ./Data\train does not exist or permission denied!

原因:/Data/train 文件不存在

解决:在D:\gitee\mindspore\model_zoo\official\cv\lenet\ 下新建Data目录,并在Data目录下新建train和test文件夹

重新执行命令 python train.py --device-target=CPU

  • 问题四 RuntimeError: Currently dateset sink mode is not supported when the device target is CPU


原因:数据下沉模式是针对asic芯片做的优化 默认是开启的,CPU不支持这种模式

解决:改为执行命令 python train.py --device_target=CPU --dataset_sink_mode=False

  • 问题五: Unexpected error. There is no valid data matching the dataset API MnistDataset.Please check file path or dataset API validation first.

原因:脚本没有自动下载MNIST数据集,需要自己手动下载

解决:手动下载MNIST数据集MNIST数据集下载地址

MNIST数据目录结构:

t10k-labels-idx1-ubyte.gzt10k-images-idx3-ubyte.gz 解压到 问题三新建的Data/test 目录下
train-labels-idx1-ubyte.gztrain-images-idx3-ubyte.gz 解压到 问题三新建的Data/test 目录下


重新执行python train.py --device_target=CPU --dataset_sink_mode=False

  • 问题六 InferImplBiasAddGrad] BiasAddGrad input y backprop, dim should >= 2, while 1.

解决:在train.py中添加语句 is_grad=False, 变成下面这样

net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",is_grad=False)

 

再度执行命令 python train.py --device_target=CPU --dataset_sink_mode=False , 训练成功;

【4】验证准确率: python eval.py --ckpt_path="ckpt/checkpoint_lenet-10_1875.ckpt" --device_target=CPU

============== Starting Testing ==============
============== {'Accuracy': 0.9844751602564102} ==============

  

 

Window10 上MindSpore(CPU)用LeNet网络训练MNIST的更多相关文章

  1. 2、TensorFlow训练MNIST

    装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和T ...

  2. MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...

  3. 卷积神经网络(CNN)学习算法之----基于LeNet网络的中文验证码识别

    由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013+Python2.7.12环境下的C ...

  4. 基于LeNet网络的中文验证码识别

    基于LeNet网络的中文验证码识别 由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013 ...

  5. 卷积网络训练太慢?Yann LeCun:已解决CIFAR-10,目标 ImageNet

    原文连接:http://blog.kaggle.com/2014/12/22/convolutional-nets-and-cifar-10-an-interview-with-yan-lecun/ ...

  6. Pytorch 分割模型构建和训练【直播】2019 年县域农业大脑AI挑战赛---(四)模型构建和网络训练

    对于分割网络,如果当成一个黑箱就是:输入一个3x1024x1024 输出4x1024x1024. 我没有使用二分类,直接使用了四分类. 分类网络使用了SegNet,没有加载预训练模型,参数也是默认初始 ...

  7. 07_利用pytorch的nn工具箱实现LeNet网络

    07_利用pytorch的nn工具箱实现LeNet网络 目录 一.引言 二.定义网络 三.损失函数 四.优化器 五.数据加载和预处理 六.Hub模块简介 七.总结 pytorch完整教程目录:http ...

  8. Raspberry Pi B+ 定时向物联网yeelink上传CPU GPU温度

     Raspberry Pi B+ 定时向物联网yeelink上传CPU GPU温度 硬件平台: Raspberry Pi B+ 软件平台: Raspberry 系统与前期安装请参见:树莓派(Ros ...

  9. LeNet训练MNIST

    jupyter notebook: https://github.com/Penn000/NN/blob/master/notebook/LeNet/LeNet.ipynb LeNet训练MNIST ...

随机推荐

  1. SSM框架整合练习——一个简单的文章管理系统

    使用SSM框架搭建的简易文章管理系统,实现了简单的增删改查功能. @ 目录 开发工具版本: 最终的项目结构 IDEA+Maven搭建项目骨架 1. 新建Maven项目: 2. 在新建的项目中添加所需要 ...

  2. java基础-01:dos命令

    进入cmd方式 win + r 输入 cmd 随便进入一个文件夹 在导航栏输入cmd,回车即进入命令行 命令 盘符切换:直接输入 E: ,回车即可 查看文件夹下所有目录:dir 切换目录: cd 跨盘 ...

  3. Jmeter 常用函数(2)- 详解 __RandomDate

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.html 作用 产生一个随机日期 语法格式 ${__R ...

  4. 精讲响应式WebClient第3篇-POST、DELETE、PUT方法使用

    本文是精讲响应式WebClient第3篇,前篇的blog访问地址如下: 精讲响应式webclient第1篇-响应式非阻塞IO与基础用法 精讲响应式WebClient第2篇-GET请求阻塞与非阻塞调用方 ...

  5. 国际象棋棋盘输出-PHP代码

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. ZERO:新手应该如何学习SEO优化

    http://www.wocaoseo.com/thread-325-1-1.html 有一个10000小时理论,说是在各行各业,想成为大师级的人物就要付出10000小时的努力,在SEO这边也是如此. ...

  7. vs使用fscanf和fprintf错误警告处理

    严重性代码说明项目文件行 禁止显示状态错误 C4996 fopen('fscanf'.strcmp):This function or variable may be unsafe. 最全解决办法(转 ...

  8. 前端测试框架Jest——语法篇

    使用匹配器 使用不同匹配器可以测试输入输出的值是否符合预期.下面介绍一些常见的匹配器.普通匹配器最简单的测试值的方法就是看是否精确匹配.首先是toBe() test('two plus two is ...

  9. e3mall商城的归纳总结5之修改商品分类、e3mall—content的搭建

    说在前面的话 本节基本上没有用到新的知识点.主要还是对数据库的增删改查以及创建了一个新的内容模块. 新增商品分类 由于easyUI的Tree需要三个字段(Id.state.text), [{ &quo ...

  10. C++ Templates (2.2 使用Stack类模板 Use of Class Template Stack )

    返回完整目录 目录 2.2 使用Stack类模板 Use of Class Template Stack 2.2 使用Stack类模板 Use of Class Template Stack 在C++ ...