LINK:Divisor Paths

考试的时候已经想到结论了 可是质因数分解想法错了 导致自闭。

一张图 一共有D个节点 每个节点x会向y连边 当且仅当y|x,x/y是一个质数。

设f(d)表示d的约数个数 那么x->y的无向边的边权为f(x)-f(y);

每次询问两个点x,y之间的最短路径的条数有多少条,保证x|D,y|D.

不妨假设x>y.当y|x时容易发现y只需要每次在保证次数大于x的质因子上不断将自己本身的一个质数因子去掉即可。

不难发现 此时最短路长度为1 因为不管中间去的方式如何最后得到的是同一个值。

可以发现 此时我们完全可以把 y当成1 把x当成x/y 来计算。

可以发现x不会增加一个质因子 因为最后还是要减掉这是不优的。

方案容易看出是排列数/每个质因子的阶乘。

考虑当y不整除x的时候

有几种选择 x->gcd(x,y)->y x->lcm(x,y)->y.

考虑第一种 x不可能往比gcd更小的点走 因为那样走只是在白白的增加恭喜罢了 同理第二种 x不会往比lcm更大的走。

可以发现 gcd(x,y)->y和x->lcm(x,y)中 显然前者一定小于后者。

考虑 x->gcd(x,y) 和 lcm(x,y)->y 中 也很显然前者一定小于后者。

再考虑路径x->gcd(x,y)这个东西 可以证明中途的时候去跑到y的质因子上面带来的结果会更差。

综上算出两条路径的方案之积即可。

考试的时候 sb的地方是 发现给出的x y质因数分解复杂度会高达1e7发现做不了。

但是我们考虑直接拿质数来筛 因为都是D的因数 所以拿D里面的质因数筛即可。

可以发现D里面的质因数不超过13个。

这样只用暴力分解D即可、

const ll MAXN=60;
ll D,n,top,maxx;
ll c[MAXN],w[MAXN],s[MAXN];
ll fac[MAXN],inv[MAXN];
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll ksm(ll b,ll p){ll cnt=1;while(p){if(p&1)cnt=cnt*b%mod;p=p>>1;b=b*b%mod;}return cnt;}
inline void prepare()
{
fac[0]=1;
rep(1,maxx,i)fac[i]=fac[i-1]*i%mod;
inv[maxx]=ksm(fac[maxx],mod-2);
fep(maxx-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
}
inline ll solve(ll x)
{
ll cnt=0;
rep(1,top,i)
{
c[i]=0;
if(x%s[i]==0)while(x%s[i]==0)++c[i],x/=s[i];
cnt+=c[i];
}
ll ans=fac[cnt];
rep(1,top,i)ans=ans*inv[c[i]]%mod;
return ans;
}
signed main()
{
freopen("1.in","r",stdin);
get(D);ll cc=D;
for(ll i=2;i*i<=cc;++i)
{
if(cc%i==0)
{
s[++top]=i;
while(cc%i==0)cc/=i,++w[top];
}
}
if(cc>1)s[++top]=cc,++w[top];
rep(1,top,i)maxx+=w[i];
get(n);prepare();
rep(1,n,i)
{
ll x,y;
get(x);get(y);
ll gg=gcd(x,y);
putl(solve(x/gg)*solve(y/gg)%mod);
}
return 0;
}

E CF R 85 div2 1334E. Divisor Paths的更多相关文章

  1. CF R 639 div2 F Review 贪心 二分

    LINK:Résumé Review 这道题让我眼前一亮没想到二分这么绝. 由于每个\(b_i\)都是局部的 全局只有一个限制\(\sum_{i=1}^nb_i=k\) 所以dp没有什么用 我们只需要 ...

  2. CF R 635 div2 1337D Xenia and Colorful Gems 贪心 二分 双指针

    LINK:Xenia and Colorful Gems 考试的时候没想到一个很好的做法. 赛后也有一个想法. 可以考虑答案的样子 x,y,z 可以发现 一共有 x<=y<=z,z< ...

  3. CF R 632 div2 1333F Kate and imperfection

    赛后看了半天题 才把题目看懂 英语水平极差. 意思:定义一个集合S的权值为max{gcd(a,b)};且\(a\neq b\) 这个集合可以从1~n中选出一些数字 求出当集合大小为k时的最小价值. 无 ...

  4. CF R 632 div2 1333D Challenges in school №41

    LINK:Challenges in school №41 考试的时候读错题了+代码UB了 所以wa到自闭 然后放弃治疗. 赛后发现UB的原因是 scanf读int类型的时候 宏定义里面是lld的类型 ...

  5. CF R 630 div2 1332 F Independent Set

    LINK:Independent Set 题目定义了 独立集和边诱导子图.然而和题目没有多少关系. 给出一棵树 求\(\sum_{E'\neq \varnothing,E'\subset E}w(G( ...

  6. CF Round #580(div2)题解报告

    CF Round #580(div2)题解报告 T1 T2 水题,不管 T3 构造题,证明大约感性理解一下 我们想既然存在解 \(|a[n + i] - a[i]| = 1\) 这是必须要满足的 既然 ...

  7. CF round #622 (div2)

    CF Round 622 div2 A.简单模拟 B.数学 题意: 某人A参加一个比赛,共n人参加,有两轮,给定这两轮的名次x,y,总排名记为两轮排名和x+y,此值越小名次越前,并且对于与A同分者而言 ...

  8. CF R 635 div1 C Kaavi and Magic Spell 区间dp

    LINK:Kaavi and Magic Spell 一打CF才知道自己原来这么菜 这题完全没想到. 可以发现 如果dp f[i][j]表示前i个字符匹配T的前j个字符的方案数 此时转移变得异常麻烦 ...

  9. 【CF】323 Div2. D. Once Again...

    挺有意思的一道题目.考虑长度为n的数组,重复n次,可以得到n*n的最长上升子序列.同理,也可以得到n*n的最长下降子序列.因此,把t分成prefix(上升子序列) + cycle(one intege ...

随机推荐

  1. html转义字符大全_网页html特殊符号,特殊字符查看对照表(整理)

    在HTML中,某些字符是预留的.比如不能使用小于号(<)和大于号(>),这是因为浏览器会误认为它们是标签.如果希望正确地显示预留字符,我们必须在 HTML 源代码中使用字符实体HTML中一 ...

  2. requirejs之demo

    具体的理论就不讲了,可以参考 http://www.ruanyifeng.com/blog/2012/10/javascript_module.html http://www.ruanyifeng.c ...

  3. embedded database (H2, HSQL or Derby), please put it on the classpath

    Description: Failed to configure a DataSource: 'url' attribute is not specified and no embedded data ...

  4. 前端同学经常忽视的一个 JavaScript 面试题

    题目 function Foo() {     getName = function () { alert (1); };     return this; } Foo.getName = funct ...

  5. 区间dp(低价回文)

    [题目大意] 追踪每头奶牛的去向是一件棘手的任务,为此农夫约翰安装了一套自动系统.他在每头牛身上安装了一个电子身份标签,当奶牛通过扫描器的时候,系统可以读取奶牛的身份信息.目前,每个身份都是由一个字符 ...

  6. Electricity POJ - 2117 + SPF POJ - 1523 去除割点后求强连通分量个数问题

    Electricity POJ - 2117 题目描述 Blackouts and Dark Nights (also known as ACM++) is a company that provid ...

  7. 从0开始,手把手教你用Vue开发一个答题App01之项目创建及答题设置页面开发

    项目演示 项目演示 项目源码 项目源码 教程说明 本教程适合对Vue基础知识有一点了解,但不懂得综合运用,还未曾使用Vue从头开发过一个小型App的读者.本教程不对所有的Vue知识点进行讲解,而是手把 ...

  8. python 并发专题(二):python线程以及线程池相关以及实现

    一 多线程实现 线程模块 - 多线程主要的内容:直接进行多线程操作,线程同步,带队列的多线程: Python3 通过两个标准库 _thread 和 threading 提供对线程的支持. _threa ...

  9. POJ 1050 To the Max 最详细的解题报告

    题目来源:To the Max 题目大意:给定一个N*N的矩阵,求该矩阵中的某一个矩形,该矩形内各元素之和最大,即最大子矩阵问题. 解题方法:最大子序列之和的扩展 解题步骤: 1.定义一个N*N的矩阵 ...

  10. Serverless的概念&定义-无服务计算详解

    过去几年间,Serverless 发展迅猛,与其相伴的还有从小程序.移动端等到前后端一体化的演进与实践,也正因如此,从云计算到前端,众多开发者都极为关注 Serverless到底是什么? 在国内,Se ...