ES 入门 - 基于词项的查询
准备
首先先声明下,我这里使用的 ES 版本 5.2.0.
为了便于理解,这里以如下 index 为格式,该格式是通过 PMACCT 抓取的 netflow 流量信息, 文中所涉及的到的例子,全基于此 index.
本篇涉及的内容可以理解为 ES 的入门内容,主要针对词项的过滤,为基础篇。
{
"_index": "shflows_agg_1600358400",
"_type": "shflows_agg",
"_id": "node1_1600359600_0_172698718_shflows_agg_0",
"_score": 1.0,
"_source": {
"collector": "node1",
"src_port": "443",
"timestamp": 1600359600,
"device_ip": "1.1.1.1",
"flows": "40",
"dst_host": "2.2.2.2",
"TAG": 10001,
"router_ip": 172698718,
"dst_port": "16384",
"pkts": 40000,
"bits": 320000000000,
"src_host": "3.3.3.3"
}
},
在正式介绍搜索前,先明确一个概念。很多人在学习 ES 查询前,容易对 Term 和全文查询进行混淆。
首先,Term 是表达语义的最小单位,在搜索和利用统计语言模型时都需要处理 Term.
对应在 ES 里,针对 Term 查询的输入来说,不会做任何的分词处理,会把输入作为一个整体,在 ES 的倒排索引中进行词项的匹配,然后利用算分公式将结果返回。并可以通过 Constant Score 将查询转换为一个 Filtering,避免算分,利用缓存,从而提高性能。
虽然输入时,不做分词处理,但在搜索时,会做分词处理。这样有时就会出现无法搜索出结果的情况,比如有 name 为 ‘Jack’ 的 doc. 但如果在搜索时,输入 Jack,ES 是无法查询到的。必须改成小写的 jack 或者使用 keyword 进行查询。
Term 查询包含:
- Term Query
- Range Query
- Exists Query
- Prefix Query
- Wildcard Query
而全文查询,是基于全文本的查询。
在 ES 中,索引(输入)和搜索时都会分词。先将查询的字符串传递到合适分词器中,然后生成一个供查询的词项列表。
全文查询包括:
- Match Query
- Match Phrase Query
- Query String Query
而下面的例子全都是基于 Term 查询。
ES 搜索概述
ES 搜索 API 可以分为两大类:
- 基于 URL 的参数搜索, 适合简单的搜索。
- 基于 Request Body 的搜索(DSL),适合更为复杂的搜索。
确定查询的索引范围:
/_search
: 集群上的所有索引
/index1/_search
: index1 索引
``/index1,index2/_search`: index1 和 index2 索引
/index*/_search
: 以 index 开头的所有索引
URL 查询
指定字段查询:
使用 q 指定参数,通过KV 间键值对查询。
举例1:查询设备 IP 为 1.1.1.1
的相关文档信息:
/shflows_agg_*/_search?q=device_ip:1.1.1.1
{
"profile": "true"
}
profile 的意思是查看查询过程
结果:可以看到 type 为 TermQuery,搜索时根据指定字段:"device_ip:10.75.44.94"
"profile": {
"shards": [
{
"id": "[e_Ac3cNJRtmVxFW9DwOwjA][shflows_agg_1600531200][0]",
"searches": [
{
"query": [
{
"type": "TermQuery",
"description": "device_ip:1.1.1.1",
"time": "445.8407320ms",
............
泛查询
不明确指定查询的 key,只指定 value,会对文档中所有 key 进行匹配
举例2:查询各个属性中带有 1.1.1.1 字符的文档, 比如如果 src_host 或者 dst_host 中出现 1.1.1.1,相关文档也会被查询出来。
/shflows_agg_*/_search?q=10.75.44.94
{
"profile": "true"
}
结果:可以看到 description 变为 _all
"profile": {
"shards": [
{
"id": "[e_Ac3cNJRtmVxFW9DwOwjA][shflows_agg_1600531200][0]",
"searches": [
{
"query": [
{
"type": "TermQuery",
"description": "_all:1.1.1.1",
......
DSL 查询
方法:通过在 body 中,编写 json 进行更为复杂的查询
查询所有文档
举例1:查询当前 index 所有文档:
/shflows_agg_index1/_search
{
"query": {
"match_all": {} # 返回所有 doc
}
}
对文档进行排序和分页
举例2:查询当前 index 所有文档,按照时间排序
/shflows_agg_index1/_search
{
"from": 10,
"size": 20,
"sort": [{"timestamp": "desc"}],
"query": {
"match_all": {} # 返回所有 doc
}
}
指定文档返回的参数
举例:指定文档中,返回的仅是指定的参数
/shflows_agg_index1/_search
{
"_source": ["timestamp", "device_ip"],
"query": {
"match_all": {} # 返回所有 doc
}
}
使用脚本字段,对文档中的多个值进行脚本运算
举例:将文档中的,源 ip 和源端口进行拼接,并以 ip_address 进行命名:
/shflows_agg_index1/_search
{
"script_fields": {
"ip_address":{
"script": {
"lang": "painless",
"inline": "params.comment + doc['device_ip'].value + ':' + doc['dst_port'].value",
"params" : {
"comment" : "ip address is: "
}
}
}
},
"query": {
"match_all": {}
}
}
结果:在 fields 里多出了新的脚本拼接后的字段
{
"took": 84,
"timed_out": false,
"_shards": {
"total": 10,
"successful": 10,
"failed": 0
},
"hits": {
"total": 36248845,
"max_score": 1.0,
"hits": [
{
"_index": "shflows_agg_1600358400",
"_type": "shflows_agg",
"_id": "node1_1600359600_0_172698718_shflows_agg_0",
"_score": 1.0,
"fields": {
"ip_address": [
"ip address is: 10.75.44.94:16384"
]
}
},
{
"_index": "shflows_agg_1600358400",
"_type": "shflows_agg",
"_id": "node1_1600359600_0_172698718_shflows_agg_5",
"_score": 1.0,
"fields": {
"ip_address": [
"ip address is: 10.75.44.94:443"
]
}
},
.......
Query Context OR Filter Context 查询
在 ES 中,搜索过程有 Query 和 Filter 上下文两种:
- Query 查询:在搜索过程中会进行相关性的算分操作
- Filter 查询:不需要进行算分,所以可以利用缓存,获得更好的性能
在 Query 和 Filter 查询里可以进行:
- 等值查询(term)
- 范围查询(range)
举例:如查询 dst_port 为 443 的 doc,并打分
/shflows_agg_index1/_search
{
"profile": "true",
"explain": true,
"query": {
"term": {"dst_port": 443}
}
}
结果:
{
"took": 191,
"timed_out": false,
"_shards": {
"total": 11,
"successful": 11,
"failed": 0
},
"hits": {
"total": 3871488,
"max_score": 2.2973032,
"hits": [
{
"_shard": "[shflows_agg_1600358400][0]",
"_node": "RWTixYPtTieZaRgAH0NOkQ",
"_index": "shflows_agg_1600358400",
"_type": "shflows_agg",
"_id": "node1_1600359600_0_172698718_shflows_agg_5",
"_score": 2.2973032, ####### 可以看到这里有计算的分数
"_source": {
"collector": "node1",
"src_port": "16384",
"timestamp": 1600359600,
使用 filter 查询:
/shflows_agg_index1/_search
{
"profile": "true",
"explain": true,
"query": {
# 使用 constant_score 不进行算分操作
"constant_score": {
"filter": {
"term": {
"dst_port": 443
}
}
}
}
}
结果:
"hits": {
"total": 3872768,
"max_score": 1.0, # 1.0 为固定值
.....
"profile": {
"shards": [
{
"id": "[e_Ac3cNJRtmVxFW9DwOwjA][shflows_agg_1600531200][0]",
"searches": [
{
"query": [
{
"type": "ConstantScoreQuery", ## 不变分数查询
"description": "ConstantScore(dst_port:443)",
举例:terms 查询,查询 dst_port 为 443 和 22 doc
/shflows_agg_index1/_search
{
"profile": "true",
"explain": true,
"query": {
# 使用 constant_score 不进行算分操作
"constant_score": {
"filter": {
"terms": {
"dst_port": [443,22]
}
}
}
}
}
举例:数据范围查询
{
"profile": "true",
"explain": true,
"query": {
"constant_score": {
"filter": {
"range": {
"timestamp": {
# 大于等于
"gte": 1601049600,
# 小于等于
"lte": 1601308800
}
}
}
}
}
}
Bool 复合查询:多个条件进行筛选
在 ES 可以通过 bool 查询,将一个或者多个查询子句组合或者嵌套到一起,实现更为复杂的查询。
bool 查询共包含 4 个子句:
- must:搜索的结果必须匹配,参与算分
- should:选择性匹配,类似于 OR,满足一个条件就可以,参与算分
- must_not: 必须不能匹配,属于 Filter context,不贡献算分
- filter:必须匹配,属于 Filter context ,不贡献算分。
must_not 和 filter 性能更好,不需要算分。
举例:查询时间范围在 1601171628 和 1601175228 之间,目的端口为 80,源目的 IP 在 [1.1.1.1 ,1.1.1.2, 1.1.1.3] 中任意一个的 doc 信息。
{
"profile": "true",
"explain": true,
"query": {
"bool": {
"must": [
{
"range": {
"timestamp": {
"gte": 1601171628,
"lte": 1601175228
}
}
},
{
"term": {
"dst_port": 80
}
},
{
"bool": {
# 注意这里 should 在 must 的数组里,如果和 must 同级,是无法影响 must 的结果的。
"should": [
{
"term": {
"src_host": "1.1.1.1"
}
},
{
"term": {
"src_host": "1.1.1.1"
}
},
{
"term": {
"src_host": "1.1.1.1"
}
}
]
}
}
]
}
}
}
参考
ES 入门 - 基于词项的查询的更多相关文章
- ElasticStack学习(九):深入ElasticSearch搜索之词项、全文本、结构化搜索及相关性算分
一.基于词项与全文的搜索 1.词项 Term(词项)是表达语意的最小单位,搜索和利用统计语言模型进行自然语言处理都需要处理Term. Term的使用说明: 1)Term Level Query:Ter ...
- ES 入门记录之 match和term查询的区别
ElasticSearch 系列文章 1 ES 入门之一 安装ElasticSearcha 2 ES 记录之如何创建一个索引映射 3 ElasticSearch 学习记录之Text keyword 两 ...
- Elasticsearch入门教程(五):Elasticsearch查询(一)
原文:Elasticsearch入门教程(五):Elasticsearch查询(一) 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:h ...
- es创建普通索引以及各种查询
创建索引 创建普通索引: PUT /my_index { "settings": { "index": { "number_of_shards&quo ...
- Elasticsearch入门教程(六):Elasticsearch查询(二)
原文:Elasticsearch入门教程(六):Elasticsearch查询(二) 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:h ...
- ES入门及安装软件
es介绍 Elasticsearch,简称es,是一款高扩展的分布式全文检索引擎.它可以近乎实时的存储,检索数据.es是面向文档型的数据库,一条数据就是一个文档,用json做为文档序列化的格式.es是 ...
- ES 入门之一 安装ElasticSearcha
安装ElasticSearcha 学习ES也有快一个月了,但是学习的时候一直没有总结.以前没有总结是因为感觉不会的很多,现在对ES有一点了解了.索性就从头从安装到使用ES做一个详细的总结,也分享给其他 ...
- 转:arcgis api for js入门开发系列四地图查询
原文地址:arcgis api for js入门开发系列四地图查询 arcgis for js的地图查询方式,一般来说,总共有三种查询方式:FindTask.IdentifyTask.QueryTas ...
- MyBatis基础入门《二》Select查询
MyBatis基础入门<二>Select查询 使用MySQL数据库,创建表: SET NAMES utf8mb4; ; -- ---------------------------- -- ...
随机推荐
- 小程序 使用Promise封装request 接口请求
//httpService.jsconst host = 'https://baidu.com/ceshi' // 接口请求的域名 // get请求使用 json对象转字符串 (formatParam ...
- SecureCRT 关键字高亮显示
grep命令红色高亮关键字 1. 左边侧栏 Session Manage 右键Sessions --Properties 2 Terminal--Appearance Current color s ...
- RabbitMQ入门指南
消息队列(Message Queue,以下简称MQ)常用于异步系统的数据传递.若不用MQ,我们只能[在应用层]使用轮询或接口回调等方式处理,这在效率或耦合度上是难以让人满意的.当然我们也可以在系统间保 ...
- 每日JS逆向练习之斗鱼登录密码加密,今天你练了吗?
一切的基本功都是为后期调试滑块验证码准备的. 有兴趣的关注一下知识图谱与大数据公众号,当然不关注也无所谓.今天来看看斗鱼登录密码加密,正所谓熟能生巧,这种简单一点的基本3-5分钟就要能抠出来,有兴趣得 ...
- label 的autosize属性
label 的autosize属性,显示不全的问题.
- CA定义以及功能说明
当您访问以HTTPS开头的网站时,即表示正在使用CA.CA是Internet的重要组成部分.如果不存在CA,那么将无法安全在线购物以及使用网银在线业务等.什么是CA?CA具体是做什么的,又是如何确保您 ...
- 【小白学PyTorch】7 最新版本torchvision.transforms常用API翻译与讲解
文章来自:微信公众号[机器学习炼丹术].欢迎关注支持原创 也欢迎添加作者微信:cyx645016617. 参考目录: 目录 1 基本函数 1.1 Compose 1.2 RandomChoice 1. ...
- vue 多环境打包
https://cli.vuejs.org/zh/guide/mode-and-env.html#%E6%A8%A1%E5%BC%8F 模式 模式是 Vue CLI 项目中一个重要的概念.默认情况下, ...
- 01vue.config.js
const path = require('path'); module.exports = { // 基本路径 publicPath: process.env.NODE_ENV === 'pro ...
- XmlAnalyzer1.00 源码
此工程用途:将xml同级属性/子节点按字母序排列重新输出. 源码下载: https://files.cnblogs.com/files/heyang78/XmlAnalyzer-20200526-1. ...