ELK原理介绍
本篇转载自:https://www.cnblogs.com/aresxin/p/8035137.html
为什么使用日志系统:
日志系统记录了系统运行、业务处理的方方面面,在故障排除、业务分析、数据挖掘、大数据分析等方面起着越来越重要的作用。
为什么用到ELK:
一般我们需要进行日志分析场景:直接在日志文件中 grep、awk 就可以获得自己想要的信息。但在规模较大的场景中,此方法效率低下,面临问题包括日志量太大如何归档、文本搜索太慢怎么办、如何多维度查询。需要集中化的日志管理,所有服务器上的日志收集汇总。常见解决思路是建立集中式日志收集系统,将所有节点上的日志统一收集,管理,访问。
一般大型系统是一个分布式部署的架构,不同的服务模块部署在不同的服务器上,问题出现时,大部分情况需要根据问题暴露的关键信息,定位到具体的服务器和服务模块,构建一套集中式日志系统,可以提高定位问题的效率。
一个完整的集中式日志系统,需要包含以下几个主要特点:
- 收集-能够采集多种来源的日志数据
- 传输-能够稳定的把日志数据传输到中央系统
- 存储-如何存储日志数据
- 分析-可以支持 UI 分析
- 警告-能够提供错误报告,监控机制
ELK提供了一整套解决方案,并且都是开源软件,之间互相配合使用,完美衔接,高效的满足了很多场合的应用。目前主流的一种日志系统。
ELK栈很受欢迎,因为它功能强大,开源免费,对于SaaS企业和创业公司等规模较小的公司,使用ELK搭建日志系统性价比很高。
Netflix、Facebook、微软(Microsoft)、领英(LinkedIn)和思科(Cisco)也使用ELK监控日志。
ELK简介:
ELK是三个开源软件的缩写,分别表示:Elasticsearch , Logstash, Kibana , 它们都是开源软件。新增了一个FileBeat,它是一个轻量级的日志收集处理工具(Agent),Filebeat占用资源少,适合于在各个服务器上搜集日志后传输给Logstash,官方也推荐此工具。
- Elasticsearch是个开源分布式搜索引擎,提供搜集、分析、存储数据三大功能。它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。
- Logstash 主要是用来日志的搜集、分析、过滤日志的工具,支持大量的数据获取方式。一般工作方式为c/s架构,client端安装在需要收集日志的主机上,server端负责将收到的各节点日志进行过滤、修改等操作在一并发往elasticsearch上去。
- Kibana 也是一个开源和免费的工具,Kibana可以为 Logstash 和 ElasticSearch 提供的日志分析友好的 Web 界面,可以帮助汇总、分析和搜索重要数据日志。
- Filebeat隶属于Beats。目前Beats包含四种工具:
- Packetbeat(搜集网络流量数据)
- Topbeat(搜集系统、进程和文件系统级别的 CPU 和内存使用情况等数据)
- Filebeat(搜集文件数据)
- Winlogbeat(搜集 Windows 事件日志数据)
涉及到组件的官方文档:
Filebeat:
https://www.elastic.co/cn/products/beats/filebeat
https://www.elastic.co/guide/en/beats/filebeat/5.6/index.html
Logstash:
https://www.elastic.co/cn/products/logstash
https://www.elastic.co/guide/en/logstash/5.6/index.html
Kibana:
https://www.elastic.co/cn/products/kibana
https://www.elastic.co/guide/en/kibana/5.5/index.html
Elasticsearch:
https://www.elastic.co/cn/products/elasticsearch
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/index.html
elasticsearch中文社区:
https://elasticsearch.cn/
ELK架构图:
架构图一:
这是最简单的一种ELK架构方式。优点是搭建简单,易于上手。缺点是Logstash耗资源较大,运行占用CPU和内存高。另外没有消息队列缓存,存在数据丢失隐患。
此架构由Logstash分布于各个节点上搜集相关日志、数据,并经过分析、过滤后发送给远端服务器上的Elasticsearch进行存储。Elasticsearch将数据以分片的形式压缩存储并提供多种API供用户查询,操作。用户亦可以更直观的通过配置Kibana Web方便的对日志查询,并根据数据生成报表。
架构图二:
此种架构引入了消息队列机制,位于各个节点上的Logstash Agent先将数据/日志传递给Kafka(或者Redis),并将队列中消息或数据间接传递给Logstash,Logstash过滤、分析后将数据传递给Elasticsearch存储。最后由Kibana将日志和数据呈现给用户。因为引入了Kafka(或者Redis),所以即使远端Logstash server因故障停止运行,数据将会先被存储下来,从而避免数据丢失。
架构图三:
此种架构将收集端logstash替换为beats,更灵活,消耗资源更少,扩展性更强。同时可配置Logstash 和Elasticsearch 集群用于支持大集群系统的运维日志数据监控和查询。
Filebeat工作原理:
Filebeat由两个主要组件组成:prospectors 和 harvesters。这两个组件协同工作将文件变动发送到指定的输出中。
Harvester(收割机):负责读取单个文件内容。每个文件会启动一个Harvester,每个Harvester会逐行读取各个文件,并将文件内容发送到制定输出中。Harvester负责打开和关闭文件,意味在Harvester运行的时候,文件描述符处于打开状态,如果文件在收集中被重命名或者被删除,Filebeat会继续读取此文件。所以在Harvester关闭之前,磁盘不会被释放。默认情况filebeat会保持文件打开的状态,直到达到close_inactive
(如果此选项开启,filebeat会在指定时间内将不再更新的文件句柄关闭,时间从harvester读取最后一行的时间开始计时。若文件句柄被关闭后,文件发生变化,则会启动一个新的harvester。关闭文件句柄的时间不取决于文件的修改时间,若此参数配置不当,则可能发生日志不实时的情况,由scan_frequency参数决定,默认10s。Harvester使用内部时间戳来记录文件最后被收集的时间。例如:设置5m,则在Harvester读取文件的最后一行之后,开始倒计时5分钟,若5分钟内文件无变化,则关闭文件句柄。默认5m)。
Prospector(勘测者):负责管理Harvester并找到所有读取源。
filebeat.prospectors:
- input_type: log
paths:
- /apps/logs/*/info.log
Prospector会找到/apps/logs/*目录下的所有info.log文件,并为每个文件启动一个Harvester。Prospector会检查每个文件,看Harvester是否已经启动,是否需要启动,或者文件是否可以忽略。若Harvester关闭,只有在文件大小发生变化的时候Prospector才会执行检查。只能检测本地的文件。
Filebeat如何记录文件状态:
将文件状态记录在文件中(默认在/var/lib/filebeat/registry)。此状态可以记住Harvester收集文件的偏移量。若连接不上输出设备,如ES等,filebeat会记录发送前的最后一行,并再可以连接的时候继续发送。Filebeat在运行的时候,Prospector状态会被记录在内存中。Filebeat重启的时候,利用registry记录的状态来进行重建,用来还原到重启之前的状态。每个Prospector会为每个找到的文件记录一个状态,对于每个文件,Filebeat存储唯一标识符以检测文件是否先前被收集。
Filebeat如何保证事件至少被输出一次:
Filebeat之所以能保证事件至少被传递到配置的输出一次,没有数据丢失,是因为filebeat将每个事件的传递状态保存在文件中。在未得到输出方确认时,filebeat会尝试一直发送,直到得到回应。若filebeat在传输过程中被关闭,则不会再关闭之前确认所有时事件。任何在filebeat关闭之前为确认的时间,都会在filebeat重启之后重新发送。这可确保至少发送一次,但有可能会重复。可通过设置shutdown_timeout
参数来设置关闭之前的等待事件回应的时间(默认禁用)。
Logstash工作原理:
Logstash事件处理有三个阶段:inputs → filters → outputs。是一个接收,处理,转发日志的工具。支持系统日志,webserver日志,错误日志,应用日志,总之包括所有可以抛出来的日志类型。
Input:输入数据到logstash。
一些常用的输入为:
file:从文件系统的文件中读取,类似于tail -f命令
syslog:在514端口上监听系统日志消息,并根据RFC3164标准进行解析
redis:从redis service中读取
beats:从filebeat中读取
Filters:数据中间处理,对数据进行操作。
一些常用的过滤器为:
grok:解析任意文本数据,Grok 是 Logstash 最重要的插件。它的主要作用就是将文本格式的字符串,转换成为具体的结构化的数据,配合正则表达式使用。内置120多个解析语法。
官方提供的grok表达式:https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns
grok在线调试:https://grokdebug.herokuapp.com/
mutate:对字段进行转换。例如对字段进行删除、替换、修改、重命名等。
drop:丢弃一部分events不进行处理。
clone:拷贝 event,这个过程中也可以添加或移除字段。
geoip:添加地理信息(为前台kibana图形化展示使用)
Outputs:outputs是logstash处理管道的最末端组件。一个event可以在处理过程中经过多重输出,但是一旦所有的outputs都执行结束,这个event也就完成生命周期。
一些常见的outputs为:
elasticsearch:可以高效的保存数据,并且能够方便和简单的进行查询。
file:将event数据保存到文件中。
graphite:将event数据发送到图形化组件中,一个很流行的开源存储图形化展示的组件。
Codecs:codecs 是基于数据流的过滤器,它可以作为input,output的一部分配置。
Codecs可以帮助你轻松的分割发送过来已经被序列化的数据。
一些常见的codecs:
json:使用json格式对数据进行编码/解码。
multiline:将汇多个事件中数据汇总为一个单一的行。比如:java异常信息和堆栈信息。
ELK原理介绍的更多相关文章
- elasticsearch学习笔记--原理介绍
前言:上一篇中我们对ES有了一个比较大概的概念,知道它是什么,干什么用的,今天给大家主要讲一下他的工作原理 介绍:ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户 ...
- 03 Yarn 原理介绍
Yarn 原理介绍 大纲: Hadoop 架构介绍 YARN 产生的背景 YARN 基础架构及原理 Hadoop的1.X架构的介绍 在1.x中的NameNodes只可能有一个,虽然可以通过Se ...
- 04 MapReduce原理介绍
大数据实战(上) # MapReduce原理介绍 大纲: * Mapreduce介绍 * MapReduce2运行原理 * shuffle及排序 定义 * Mapreduce 最早是由googl ...
- Android Animation学习(一) Property Animation原理介绍和API简介
Android Animation学习(一) Property Animation介绍 Android Animation Android framework提供了两种动画系统: property a ...
- [转]MySQL主从复制原理介绍
MySQL主从复制原理介绍 一.复制的原理 MySQL 复制基于主服务器在二进制日志中跟踪所有对数据库的更改(更新.删除等等).每个从服务器从主服务器接收主服务器已经记录到其二进制日志的保存的更新,以 ...
- 分布式文件系统FastDFS原理介绍
在生产中我们一般希望文件系统能帮我们解决以下问题,如:1.超大数据存储:2.数据高可用(冗余备份):3.读/写高性能:4.海量数据计算.最好还得支持多平台多语言,支持高并发. 由于单台服务器无法满足以 ...
- 内存分析_.Net内存原理介绍
内存原理介绍 1. .Net应用程序中的内存 1.1.Net内存类型 Windows使用一个系统:虚拟寻址系统.这个系统的作用是将程序可用的内存地址映射到硬件内存中的实际地址上.其实际结果 ...
- 液晶常用接口“LVDS、TTL、RSDS、TMDS”技术原理介绍
液晶常用接口“LVDS.TTL.RSDS.TMDS”技术原理介绍 1:Lvds Low-Voltage Differential Signaling 低压差分信号 1994年由美国国家半导体公司提出之 ...
- 淘宝JAVA中间件Diamond详解(2)-原理介绍
淘宝JAVA中间件Diamond详解(二)---原理介绍 大家好,通过第一篇的快速使用,大家已经对diamond有了一个基本的了解.本次为大家带来的是diamond核心原理的介绍,主要包括server ...
随机推荐
- ⭐NES.css推荐⭐
今天发现一个有意思的CSS框架,叫NES.css 官网地址:https://nostalgic-css.github.io/NES.css/ gitHub地址:https://github.com/n ...
- JavaSE 学习笔记07丨IO流
Chapter 13. IO流 13.1 File类 java.io.File类是文件(file)和目录(文件夹)(directory)路径名(path)的抽象表示,主要用于文件和目录的创建.查找和删 ...
- Debian10快速部署DHCP服务
前言 DHCP(动态主机配置协议)是一个局域网的网络协议.指的是由服务器控制一段IP地址范围,客户机登录服务器时就可以自动获得服务器分配的IP地址和子网掩码. 进日,想提升一下自己的技术水平,于是就做 ...
- CPU实现原子操作的原理
586之前的CPU, 会通过LOCK锁总线的形式来实现原子操作. 686开始则提供了存储一致性(Cache coherence), 这是多处理的基础, 也是原子操作的基础. 1. 存储的粒度 存储的 ...
- 初学者值得拥有【Hadoop伪分布式模式安装部署】
目录 1.了解单机模式与伪分布模式有何区别 2.安装好单机模式的Hadoop 3.修改Hadoop配置文件---五个核心配置文件 (1)hadoop-env.sh 1.到hadoop目录中 2.修 ...
- CAD插件
CAD插件使用: 1.首先得有插件,插件解压,放那个盘都可以,只要自己觉得放得下,注:(每次打开CAD想要用插件都要的步骤)打开CAD---AP回车----找到插件所在文件夹-------Ctrl+A ...
- 转:csdn怎么快速别人的文章
在csdn看到好的文章想转载,无奈找不到转载的功能,只能想办法了. 首先确定原文允许转载 在文章开头处一般有版权声明,如图 转载时要注明出处和作者 如何转载 用谷歌浏览器加载文章地址,打开文章 F12 ...
- Python接口测试-使用requests模块发送post请求
本篇主要记录下使用python的requests模块发送post请求的实现代码. #coding=utf-8 import unittest import requests class PostTes ...
- pytorch实战(二)hw2——预测收入是否高于50000,分类问题
代码和ppt: https://github.com/Iallen520/lhy_DL_Hw 遇到的一些细节问题: 1. X_train文件不带后缀名csv,所以不是规范的csv文件,不能直接用pd. ...
- WebRequest抓取网页数据出现乱码问题
今天项目里突然有个功能用不起来了,本机确实好的 ,这个很无语 不知道为啥 经过写日志发现html 变成了这样的东西,很是头疼,刚开始各种编码转换,发现这并不是编码的问题 后面观察目标网站多了一个gzi ...