插头dp

洛谷 黑题板子?

P5056

给出n×m的方格,有些格子不能铺线,其它格子必须铺,形成一个闭合回路。问有多少种铺法?

1、轮廓线

简单地说,轮廓线就是已决策格子和未决策格子的分界线;

2,插头dp以每一个格子进行一次转移;

3,一般设 dp[i][j][state]为(i,j)位置,状态为state的方案数(或者代价,等等让你求的东西……)

所以我们状压什么呢?轮廓线。

DP求解棋盘问题是逐格转移的。所以已经转移过的格子和没转移过的格子被一个折线分成了两半儿。这个折线就是轮廓线。

注意轮廓线状态来确定用几进制数表示,例如这道题有三种状态可以用三进制表示,但是太麻烦 蒟蒻不会 ;

可以用四进制,因为我们一般用的都是二进制的运算,我们可以用两个二进制数表示一个四进制数;

可以用哈希表存储状态,

4,一般的,对于dp数组,我们可以滚动

一些细节代码里看,由于我还没写,先用学长的;

// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define int ll
#define maxn 100010
#define mod 1926223
using namespace std;
inline int read()
{
int x = 0 , f = 1 ; char ch = getchar() ;
while(!isdigit(ch)) { if(ch == '-') f = -1 ; ch = getchar() ; }
while(isdigit(ch)) x = (x << 3) + (x << 1) + ch - '0' , ch = getchar() ;
return x * f ;
}
int n , m , hash[mod + 1] , dp[2][mod + 1] , vis[2][mod + 1] , cnt[2] ;
int now , mp[22][22] , endx , endy , ans ;
char opt[22] ;
inline void insert(int x , int k)
{
int tmp = x % mod ;
while(hash[tmp])
{
if(vis[now][hash[tmp]] == x) {
dp[now][hash[tmp]] += k ; return ;
}
tmp = (tmp + 1) % mod ;
// cout << "!" << endl ;
}
hash[tmp] = ++cnt[now] ; vis[now][cnt[now]] = x ; dp[now][cnt[now]] = k ;
}
inline void work()
{
dp[0][1] = 1 ; cnt[0] = 1 ; vis[0][1] = 0 ;
for(int i = 1 ; i <= n ; ++i)
{
for(int j = 1 ; j <= m ; ++j)
{
cnt[now ^= 1] = 0 ;
memset(hash , 0 , sizeof hash) ;
for(int k = 1 ; k <= cnt[now ^ 1] ; ++k)
{
int S = vis[now ^ 1][k] , L = (S >> ((j - 1) * 2)) & 3 , R = (S >> (j << 1)) & 3 ;//注意这个就是取出捆绑的两个二进制数;
int val = dp[now ^ 1][k] ;
if(!mp[i][j]) {
// if(!L && !R)
insert(S , val) ;
continue ;
}
if(!L && !R)
{
if(mp[i+1][j] && mp[i][j+1]) insert(S ^ (1 << ((j - 1) << 1)) ^ (2 << (j << 1)) , val) ;
}
if(!L && R)
{
if(mp[i][j+1]) insert(S , val) ;
if(mp[i+1][j]) insert(S ^ (R << (j << 1)) ^ (R << ((j - 1) << 1)) , val) ;
}
if(L && !R)
{
if(mp[i+1][j]) insert(S , val) ;
if(mp[i][j+1]) insert(S ^ (L << ((j - 1) << 1)) ^ (L << (j << 1)) , val) ;
}
if(L == 1 && R == 1)
{
int du = 0 ;
for(int p = j + 1 ; ; ++p)
{
int state = (S >> ((p - 1) << 1)) & 3 ;
if(state == 1) du ++ ;
if(state == 2) du -- ;
if(du == 0) {
int dou = S ^ (1 << ((j - 1) << 1)) ^ (1 << (j << 1)) ;
insert(dou ^ (2 << ((p - 1) << 1)) ^ (1 << ((p - 1) << 1)) , val) ;
break ;
}
}
}
if(L == 2 && R == 2)
{#nvluf ec j
int du = 0 ;
for(int p = j ; ; --p)
{
int state = (S >> ((p - 1) << 1)) & 3 ;
if(state == 1) du ++ ;
if(state == 2) du -- ;
if(du == 0) {
int dou = S ^ (2 << ((j - 1) << 1)) ^ (2 << (j << 1)) ;
insert(dou ^ (1 << ((p - 1) << 1)) ^ (2 << ((p - 1) << 1)) , val) ;
break ;
}
}
}
if(L == 2 && R == 1)
insert(S ^ (2 << ((j - 1) << 1)) ^ (1 << (j << 1)) , val);
if(L == 1 && R == 2 && i == endx && j == endy)
ans += val ;
}
}
for(int j = 1 ; j <= cnt[now] ; ++j) vis[now][j] <<= 2 ;
}
printf("%lld\n" , ans) ;
}
signed main()
{
n = read() , m = read() ;
for(int i = 1 ; i <= n ; ++i) {
scanf("%s" , opt + 1) ;
for(int j = 1 ; j <= m ; ++j)
if(opt[j] == '.')
mp[i][j] = 1 , endx = i , endy = j ;
}
work() ;
}

插头 dp的更多相关文章

  1. 插头dp

    插头dp 感受: 我觉得重点是理解,算法并不是直接想出怎样由一种方案变成另一种方案.而是方案本来就在那里,我们只是枚举状态统计了答案. 看看cdq的讲义什么的,一开始可能觉得状态很多,但其实灰常简单 ...

  2. HDU 4113 Construct the Great Wall(插头dp)

    好久没做插头dp的样子,一开始以为这题是插头,状压,插头,状压,插头,状压,插头,状压,无限对又错. 昨天看到的这题. 百度之后发现没有人发题解,hust也没,hdu也没discuss...在acm- ...

  3. HDU 4949 Light(插头dp、位运算)

    比赛的时候没看题,赛后看题觉得比赛看到应该可以敲的,敲了之后发现还真就会卡题.. 因为写完之后,无限TLE... 直到后来用位运算代替了我插头dp常用的decode.encode.shift三个函数以 ...

  4. 插头DP专题

    建议入门的人先看cd琦的<基于连通性状态压缩的动态规划问题>.事半功倍. 插头DP其实是比较久以前听说的一个东西,当初是水了几道水题,最近打算温习一下,顺便看下能否入门之类. 插头DP建议 ...

  5. HDU 1693 Eat the Trees(插头DP、棋盘哈密顿回路数)+ URAL 1519 Formula 1(插头DP、棋盘哈密顿单回路数)

    插头DP基础题的样子...输入N,M<=11,以及N*M的01矩阵,0(1)表示有(无)障碍物.输出哈密顿回路(可以多回路)方案数... 看了个ppt,画了下图...感觉还是挺有效的... 参考 ...

  6. HDU 1693 Eat the Trees(插头DP)

    题目链接 USACO 第6章,第一题是一个插头DP,无奈啊.从头看起,看了好久的陈丹琦的论文,表示木看懂... 大体知道思路之后,还是无法实现代码.. 此题是插头DP最最简单的一个,在一个n*m的棋盘 ...

  7. HDU 4064 Carcassonne(插头DP)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4064 Problem Description Carcassonne is a tile-based ...

  8. URAL 1519 基础插头DP

    题目大意: 给定一个图,一部分点'*'作为障碍物,求经过所有非障碍点的汉密尔顿回路有多少条 基础的插头DP题目,对于陈丹琦的论文来说我觉得http://blog.sina.com.cn/s/blog_ ...

  9. uva 11270 - Tiling Dominoes(插头dp)

    题目链接:uva 11270 - Tiling Dominoes 题目大意:用1∗2木块将给出的n∗m大小的矩阵填满的方法总数. 解题思路:插头dp的裸题,dp[i][s]表示第i块位置.而且该位置相 ...

  10. bzoj 1187: [HNOI2007]神奇游乐园 插头dp

    1187: [HNOI2007]神奇游乐园 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 668  Solved: 337[Submit][Statu ...

随机推荐

  1. 【转】Android DrawingCache

    转自:http://magiclen.org/android-drawingcache/ 日期: 2014 年 8 月 27 日 | 作者: Magic Len 開發Android的時候,在許多情況下 ...

  2. 【接口自动化】selenium库也有大用场(获取cookie)

    相信有些童鞋在做接口.或者说接口自动化测试的过程中会遇到这样的场景:测试的接口,必须是需要登录后才能发起请求成功的. 那么怎么解决呢? 本着团队协作的精神,我们就去让开发同学开个后门,给你个" ...

  3. HDU - 3499 -(Dijkstra变形+枚举边)

    Recently, Shua Shua had a big quarrel with his GF. He is so upset that he decides to take a trip to ...

  4. datattable循环读取数据用于循环遍历checkboxlist里的项目

    DataTable dt = bptb.GetList("Pro_ID="+id).Tables[0]; foreach (ListItem li in from DataRow ...

  5. python 模块安装导入

    一.定义 python模块就是一个.py文件,一个模块中可以有多个函数,在使用模块时,只需要import下,就可以使用模块中的函数功能.import模块的过程相当于把这个py文件中的所有内容都执行一遍 ...

  6. 《SeleniumBasic 3.141.0.0 - 在VBA中操作浏览器》系列文章之一:SeleniumBasic的下载

    Selenium是一种非常流行的浏览器和网页自动化技术,开发人员可以使用C#.Java.Python等语言来操作Chrome.Firefox等浏览器. VBA语言可以直接操作访问Microsoft I ...

  7. 实践案例丨基于 Raft 协议的分布式数据库系统应用

    摘要:简单介绍Raft协议的原理.以及存储节点(Pinetree)如何应用 Raft实现复制的一些工程实践经验. 1.引言 在华为分布式数据库的工程实践过程中,我们实现了一个计算存储分离. 底层存储基 ...

  8. yum安装软件包提示Error Downloading Packages解决方法

    在执行yum upgrade时报错 解决方法: 方法一: 1.清理本地yum缓存 执行:yum clean all 2.查看软件包列表 执行:yum list 注意:如果查询不到软件包列表,查看yum ...

  9. USB 设备驱动(写给自己看的)

    集线器与控制器(USB地址7bit) 设备,配置,端点,接口 USB1.0(低速1.2),1.1(全速450m),2.0(高速,电流传输)区别 引脚4根(V,D-,D+,gnd),miniUSB增加 ...

  10. 初识ABP vNext(10):ABP设置管理

    Tips:本篇已加入系列文章阅读目录,可点击查看更多相关文章. 目录 前言 开始 定义设置 使用设置 最后 前言 上一篇介绍了ABP模块化开发的基本步骤,完成了一个简单的文件上传功能.通常的模块都有一 ...