一文读懂SuperEdge拓扑算法
前言
SuperEdge service group 利用 application-grid-wrapper 实现拓扑感知,完成了同一个 nodeunit 内服务的闭环访问
在深入分析 application-grid-wrapper 之前,这里先简单介绍一下社区 Kubernetes 原生支持的拓扑感知特性
Kubernetes service topology awareness 特性于v1.17发布alpha版本,用于实现路由拓扑以及就近访问特性。用户需要在 service 中添加 topologyKeys 字段标示拓扑key类型,只有具有相同拓扑域的endpoint会被访问到,目前有三种 topologyKeys可供选择:
- "kubernetes.io/hostname":访问本节点内(
kubernetes.io/hostname
label value相同)的 endpoint,如果没有则 service 访问失败 - "topology.kubernetes.io/zone":访问相同zone域内(
topology.kubernetes.io/zone
label value 相同)的 endpoint,如果没有则 service 访问失败 - "topology.kubernetes.io/region":访问相同region域内(
topology.kubernetes.io/region
label value相同)的 endpoint,如果没有则 service 访问失败
除了单独填写如上某一个拓扑key之外,还可以将这些key构造成列表进行填写,例如:["kubernetes.io/hostname", "topology.kubernetes.io/zone", "topology.kubernetes.io/region"]
,这表示:优先访问本节点内的 endpoint;如果不存在,则访问同一个 zone 内的 endpoint;如果再不存在,则访问同一个 region 内的 endpoint,如果都不存在则访问失败
另外,还可以在列表最后(只能最后一项)添加"*"表示:如果前面拓扑域都失败,则访问任何有效的 endpoint,也即没有限制拓扑了,示例如下:
# A Service that prefers node local, zonal, then regional endpoints but falls back to cluster wide endpoints.
apiVersion: v1
kind: Service
metadata:
name: my-service
spec:
selector:
app: my-app
ports:
- protocol: TCP
port: 80
targetPort: 9376
topologyKeys:
- "kubernetes.io/hostname"
- "topology.kubernetes.io/zone"
- "topology.kubernetes.io/region"
- "*"
而service group实现的拓扑感知和社区对比,有如下区别:
- service group 拓扑key可以自定义,也即为 gridUniqKey,使用起来更加灵活;而社区实现目前只有三种选择:"kubernetes.io/hostname","topology.kubernetes.io/zone" 以及 "topology.kubernetes.io/region"
- service group 只能填写一个拓扑 key,也即只能访问本拓扑域内有效的 endpoint,无法访问其它拓扑域的 endpoint;而社区可以通过 topologyKey 列表以及"*"实现其它备选拓扑域 endpoint 的访问
service group 实现的拓扑感知,service 配置如下:
# A Service that only prefers node zone1al endpoints.
apiVersion: v1
kind: Service
metadata:
annotations:
topologyKeys: '["zone1"]'
labels:
superedge.io/grid-selector: servicegrid-demo
name: servicegrid-demo-svc
spec:
ports:
- port: 80
protocol: TCP
targetPort: 8080
selector:
appGrid: echo
在介绍完 service group 实现的拓扑感知后,我们深入到源码分析实现细节。同样的,这里以一个使用示例开始分析:
# step1: labels edge nodes
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
node0 Ready <none> 16d v1.16.7
node1 Ready <none> 16d v1.16.7
node2 Ready <none> 16d v1.16.7
# nodeunit1(nodegroup and servicegroup zone1)
$ kubectl --kubeconfig config label nodes node0 zone1=nodeunit1
# nodeunit2(nodegroup and servicegroup zone1)
$ kubectl --kubeconfig config label nodes node1 zone1=nodeunit2
$ kubectl --kubeconfig config label nodes node2 zone1=nodeunit2
...
# step3: deploy echo ServiceGrid
$ cat <<EOF | kubectl --kubeconfig config apply -f -
apiVersion: superedge.io/v1
kind: ServiceGrid
metadata:
name: servicegrid-demo
namespace: default
spec:
gridUniqKey: zone1
template:
selector:
appGrid: echo
ports:
- protocol: TCP
port: 80
targetPort: 8080
EOF
servicegrid.superedge.io/servicegrid-demo created
# note that there is only one relevant service generated
$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 192.168.0.1 <none> 443/TCP 16d
servicegrid-demo-svc ClusterIP 192.168.6.139 <none> 80/TCP 10m
# step4: access servicegrid-demo-svc(service topology and closed-looped)
# execute on node0
$ curl 192.168.6.139|grep "node name"
node name: node0
# execute on node1 and node2
$ curl 192.168.6.139|grep "node name"
node name: node2
$ curl 192.168.6.139|grep "node name"
node name: node1
在创建完 ServiceGrid CR 后,ServiceGrid Controller 负责根据 ServiceGrid 产生对应的 service (包含由serviceGrid.Spec.GridUniqKey 构成的 topologyKeys annotations);而 application-grid-wrapper 根据 service 实现拓扑感知,下面依次分析。
ServiceGrid Controller 分析
ServiceGrid Controller 逻辑和 DeploymentGrid Controller 整体一致,如下:
- 1、创建并维护 service group 需要的若干CRDs(包括:ServiceGrid)
- 2、监听 ServiceGrid event,并填充 ServiceGrid 到工作队列中;循环从队列中取出 ServiceGrid 进行解析,创建并且维护对应的 service
- 3、监听 service event,并将相关的 ServiceGrid 塞到工作队列中进行上述处理,协助上述逻辑达到整体 reconcile 逻辑
注意这里区别于 DeploymentGrid Controller:
- 一个 ServiceGrid 对象只产生一个 service
- 只需额外监听 service event,无需监听 node 事件。因为 node的CRUD 与 ServiceGrid 无关
- ServiceGrid 对应产生的 service,命名为:
{ServiceGrid}-svc
func (sgc *ServiceGridController) syncServiceGrid(key string) error {
startTime := time.Now()
klog.V(4).Infof("Started syncing service grid %q (%v)", key, startTime)
defer func() {
klog.V(4).Infof("Finished syncing service grid %q (%v)", key, time.Since(startTime))
}()
namespace, name, err := cache.SplitMetaNamespaceKey(key)
if err != nil {
return err
}
sg, err := sgc.svcGridLister.ServiceGrids(namespace).Get(name)
if errors.IsNotFound(err) {
klog.V(2).Infof("service grid %v has been deleted", key)
return nil
}
if err != nil {
return err
}
if sg.Spec.GridUniqKey == "" {
sgc.eventRecorder.Eventf(sg, corev1.EventTypeWarning, "Empty", "This service grid has an empty grid key")
return nil
}
// get service workload list of this grid
svcList, err := sgc.getServiceForGrid(sg)
if err != nil {
return err
}
if sg.DeletionTimestamp != nil {
return nil
}
// sync service grid relevant services workload
return sgc.reconcile(sg, svcList)
}
func (sgc *ServiceGridController) getServiceForGrid(sg *crdv1.ServiceGrid) ([]*corev1.Service, error) {
svcList, err := sgc.svcLister.Services(sg.Namespace).List(labels.Everything())
if err != nil {
return nil, err
}
labelSelector, err := common.GetDefaultSelector(sg.Name)
if err != nil {
return nil, err
}
canAdoptFunc := controller.RecheckDeletionTimestamp(func() (metav1.Object, error) {
fresh, err := sgc.crdClient.SuperedgeV1().ServiceGrids(sg.Namespace).Get(context.TODO(), sg.Name, metav1.GetOptions{})
if err != nil {
return nil, err
}
if fresh.UID != sg.UID {
return nil, fmt.Errorf("orignal service grid %v/%v is gone: got uid %v, wanted %v", sg.Namespace,
sg.Name, fresh.UID, sg.UID)
}
return fresh, nil
})
cm := controller.NewServiceControllerRefManager(sgc.svcClient, sg, labelSelector, util.ControllerKind, canAdoptFunc)
return cm.ClaimService(svcList)
}
func (sgc *ServiceGridController) reconcile(g *crdv1.ServiceGrid, svcList []*corev1.Service) error {
var (
adds []*corev1.Service
updates []*corev1.Service
deletes []*corev1.Service
)
sgTargetSvcName := util.GetServiceName(g)
isExistingSvc := false
for _, svc := range svcList {
if svc.Name == sgTargetSvcName {
isExistingSvc = true
template := util.KeepConsistence(g, svc)
if !apiequality.Semantic.DeepEqual(template, svc) {
updates = append(updates, template)
}
} else {
deletes = append(deletes, svc)
}
}
if !isExistingSvc {
adds = append(adds, util.CreateService(g))
}
return sgc.syncService(adds, updates, deletes)
}
func CreateService(sg *crdv1.ServiceGrid) *corev1.Service {
svc := &corev1.Service{
ObjectMeta: metav1.ObjectMeta{
Name: GetServiceName(sg),
Namespace: sg.Namespace,
// Append existed ServiceGrid labels to service to be created
Labels: func() map[string]string {
if sg.Labels != nil {
newLabels := sg.Labels
newLabels[common.GridSelectorName] = sg.Name
newLabels[common.GridSelectorUniqKeyName] = sg.Spec.GridUniqKey
return newLabels
} else {
return map[string]string{
common.GridSelectorName: sg.Name,
common.GridSelectorUniqKeyName: sg.Spec.GridUniqKey,
}
}
}(),
Annotations: make(map[string]string),
},
Spec: sg.Spec.Template,
}
keys := make([]string, 1)
keys[0] = sg.Spec.GridUniqKey
keyData, _ := json.Marshal(keys)
svc.Annotations[common.TopologyAnnotationsKey] = string(keyData)
return svc
}
由于逻辑与DeploymentGrid类似,这里不展开细节,重点关注 application-grid-wrapper 部分
application-grid-wrapper 分析
在 ServiceGrid Controller 创建完 service 之后,application-grid-wrapper 的作用就开始启动了:
apiVersion: v1
kind: Service
metadata:
annotations:
topologyKeys: '["zone1"]'
creationTimestamp: "2021-03-03T07:33:30Z"
labels:
superedge.io/grid-selector: servicegrid-demo
name: servicegrid-demo-svc
namespace: default
ownerReferences:
- apiVersion: superedge.io/v1
blockOwnerDeletion: true
controller: true
kind: ServiceGrid
name: servicegrid-demo
uid: 78c74d3c-72ac-4e68-8c79-f1396af5a581
resourceVersion: "127987090"
selfLink: /api/v1/namespaces/default/services/servicegrid-demo-svc
uid: 8130ba7b-c27e-4c3a-8ceb-4f6dd0178dfc
spec:
clusterIP: 192.168.161.1
ports:
- port: 80
protocol: TCP
targetPort: 8080
selector:
appGrid: echo
sessionAffinity: None
type: ClusterIP
status:
loadBalancer: {}
为了实现 Kubernetes 零侵入,需要在 kube-proxy与apiserver 通信之间添加一层 wrapper,架构如下:
调用链路如下:
kube-proxy -> application-grid-wrapper -> lite-apiserver -> kube-apiserver
因此application-grid-wrapper会起服务,接受来自kube-proxy的请求,如下:
func (s *interceptorServer) Run(debug bool, bindAddress string, insecure bool, caFile, certFile, keyFile string) error {
...
klog.Infof("Start to run interceptor server")
/* filter
*/
server := &http.Server{Addr: bindAddress, Handler: s.buildFilterChains(debug)}
if insecure {
return server.ListenAndServe()
}
...
server.TLSConfig = tlsConfig
return server.ListenAndServeTLS("", "")
}
func (s *interceptorServer) buildFilterChains(debug bool) http.Handler {
handler := http.Handler(http.NewServeMux())
handler = s.interceptEndpointsRequest(handler)
handler = s.interceptServiceRequest(handler)
handler = s.interceptEventRequest(handler)
handler = s.interceptNodeRequest(handler)
handler = s.logger(handler)
if debug {
handler = s.debugger(handler)
}
return handler
}
这里会首先创建 interceptorServer,然后注册处理函数,由外到内依次如下:
debug:接受 debug 请求,返回 wrapper pprof 运行信息
logger:打印请求日志
node:接受 kube-proxy node GET(/api/v1/nodes/{node}) 请求,并返回node信息
event:接受 kube-proxy events POST (/events)请求,并将请求转发给 lite-apiserver
func (s *interceptorServer) interceptEventRequest(handler http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost || !strings.HasSuffix(r.URL.Path, "/events") {
handler.ServeHTTP(w, r)
return
}
targetURL, _ := url.Parse(s.restConfig.Host)
reverseProxy := httputil.NewSingleHostReverseProxy(targetURL)
reverseProxy.Transport, _ = rest.TransportFor(s.restConfig)
reverseProxy.ServeHTTP(w, r)
})
}
service:接受 kube-proxy service List&Watch(/api/v1/services) 请求,并根据 storageCache 内容返回(GetServices)
endpoint:接受 kube-proxy endpoint List&Watch(/api/v1/endpoints) 请求,并根据 storageCache内容返回 (GetEndpoints)
下面先重点分析 cache 部分的逻辑,然后再回过头来分析具体的 http handler List&Watch 处理逻辑
wrapper 为了实现拓扑感知,自己维护了一个 cache,包括:node,service,endpoint。可以看到在 setupInformers 中注册了这三类资源的处理函数:
type storageCache struct {
// hostName is the nodeName of node which application-grid-wrapper deploys on
hostName string
wrapperInCluster bool
// mu lock protect the following map structure
mu sync.RWMutex
servicesMap map[types.NamespacedName]*serviceContainer
endpointsMap map[types.NamespacedName]*endpointsContainer
nodesMap map[types.NamespacedName]*nodeContainer
// service watch channel
serviceChan chan<- watch.Event
// endpoints watch channel
endpointsChan chan<- watch.Event
}
...
func NewStorageCache(hostName string, wrapperInCluster bool, serviceNotifier, endpointsNotifier chan watch.Event) *storageCache {
msc := &storageCache{
hostName: hostName,
wrapperInCluster: wrapperInCluster,
servicesMap: make(map[types.NamespacedName]*serviceContainer),
endpointsMap: make(map[types.NamespacedName]*endpointsContainer),
nodesMap: make(map[types.NamespacedName]*nodeContainer),
serviceChan: serviceNotifier,
endpointsChan: endpointsNotifier,
}
return msc
}
...
func (s *interceptorServer) Run(debug bool, bindAddress string, insecure bool, caFile, certFile, keyFile string) error {
...
if err := s.setupInformers(ctx.Done()); err != nil {
return err
}
klog.Infof("Start to run interceptor server")
/* filter
*/
server := &http.Server{Addr: bindAddress, Handler: s.buildFilterChains(debug)}
...
return server.ListenAndServeTLS("", "")
}
func (s *interceptorServer) setupInformers(stop <-chan struct{}) error {
klog.Infof("Start to run service and endpoints informers")
noProxyName, err := labels.NewRequirement(apis.LabelServiceProxyName, selection.DoesNotExist, nil)
if err != nil {
klog.Errorf("can't parse proxy label, %v", err)
return err
}
noHeadlessEndpoints, err := labels.NewRequirement(v1.IsHeadlessService, selection.DoesNotExist, nil)
if err != nil {
klog.Errorf("can't parse headless label, %v", err)
return err
}
labelSelector := labels.NewSelector()
labelSelector = labelSelector.Add(*noProxyName, *noHeadlessEndpoints)
resyncPeriod := time.Minute * 5
client := kubernetes.NewForConfigOrDie(s.restConfig)
nodeInformerFactory := informers.NewSharedInformerFactory(client, resyncPeriod)
informerFactory := informers.NewSharedInformerFactoryWithOptions(client, resyncPeriod,
informers.WithTweakListOptions(func(options *metav1.ListOptions) {
options.LabelSelector = labelSelector.String()
}))
nodeInformer := nodeInformerFactory.Core().V1().Nodes().Informer()
serviceInformer := informerFactory.Core().V1().Services().Informer()
endpointsInformer := informerFactory.Core().V1().Endpoints().Informer()
/*
*/
nodeInformer.AddEventHandlerWithResyncPeriod(s.cache.NodeEventHandler(), resyncPeriod)
serviceInformer.AddEventHandlerWithResyncPeriod(s.cache.ServiceEventHandler(), resyncPeriod)
endpointsInformer.AddEventHandlerWithResyncPeriod(s.cache.EndpointsEventHandler(), resyncPeriod)
go nodeInformer.Run(stop)
go serviceInformer.Run(stop)
go endpointsInformer.Run(stop)
if !cache.WaitForNamedCacheSync("node", stop,
nodeInformer.HasSynced,
serviceInformer.HasSynced,
endpointsInformer.HasSynced) {
return fmt.Errorf("can't sync informers")
}
return nil
}
func (sc *storageCache) NodeEventHandler() cache.ResourceEventHandler {
return &nodeHandler{cache: sc}
}
func (sc *storageCache) ServiceEventHandler() cache.ResourceEventHandler {
return &serviceHandler{cache: sc}
}
func (sc *storageCache) EndpointsEventHandler() cache.ResourceEventHandler {
return &endpointsHandler{cache: sc}
}
这里依次分析 NodeEventHandler,ServiceEventHandler 以及 EndpointsEventHandler,如下:
1、NodeEventHandler
NodeEventHandler 负责监听 node 资源相关 event,并将 node 以及 node Labels 添加到storageCache.nodesMap 中 (key 为 nodeName,value 为 node 以及 node labels)
func (nh *nodeHandler) add(node *v1.Node) {
sc := nh.cache
sc.mu.Lock()
nodeKey := types.NamespacedName{Namespace: node.Namespace, Name: node.Name}
klog.Infof("Adding node %v", nodeKey)
sc.nodesMap[nodeKey] = &nodeContainer{
node: node,
labels: node.Labels,
}
// update endpoints
changedEps := sc.rebuildEndpointsMap()
sc.mu.Unlock()
for _, eps := range changedEps {
sc.endpointsChan <- eps
}
}
func (nh *nodeHandler) update(node *v1.Node) {
sc := nh.cache
sc.mu.Lock()
nodeKey := types.NamespacedName{Namespace: node.Namespace, Name: node.Name}
klog.Infof("Updating node %v", nodeKey)
nodeContainer, found := sc.nodesMap[nodeKey]
if !found {
sc.mu.Unlock()
klog.Errorf("Updating non-existed node %v", nodeKey)
return
}
nodeContainer.node = node
// return directly when labels of node stay unchanged
if reflect.DeepEqual(node.Labels, nodeContainer.labels) {
sc.mu.Unlock()
return
}
nodeContainer.labels = node.Labels
// update endpoints
changedEps := sc.rebuildEndpointsMap()
sc.mu.Unlock()
for _, eps := range changedEps {
sc.endpointsChan <- eps
}
}
...
同时由于 node 的改变会影响 endpoint,因此会调用 rebuildEndpointsMap 刷新 storageCache.endpointsMap
// rebuildEndpointsMap updates all endpoints stored in storageCache.endpointsMap dynamically and constructs relevant modified events
func (sc *storageCache) rebuildEndpointsMap() []watch.Event {
evts := make([]watch.Event, 0)
for name, endpointsContainer := range sc.endpointsMap {
newEps := pruneEndpoints(sc.hostName, sc.nodesMap, sc.servicesMap, endpointsContainer.endpoints, sc.wrapperInCluster)
if apiequality.Semantic.DeepEqual(newEps, endpointsContainer.modified) {
continue
}
sc.endpointsMap[name].modified = newEps
evts = append(evts, watch.Event{
Type: watch.Modified,
Object: newEps,
})
}
return evts
}
rebuildEndpointsMap 是 cache 的核心函数,同时也是拓扑感知的算法实现:
// pruneEndpoints filters endpoints using serviceTopology rules combined by services topologyKeys and node labels
func pruneEndpoints(hostName string,
nodes map[types.NamespacedName]*nodeContainer,
services map[types.NamespacedName]*serviceContainer,
eps *v1.Endpoints, wrapperInCluster bool) *v1.Endpoints {
epsKey := types.NamespacedName{Namespace: eps.Namespace, Name: eps.Name}
if wrapperInCluster {
eps = genLocalEndpoints(eps)
}
// dangling endpoints
svc, ok := services[epsKey]
if !ok {
klog.V(4).Infof("Dangling endpoints %s, %+#v", eps.Name, eps.Subsets)
return eps
}
// normal service
if len(svc.keys) == 0 {
klog.V(4).Infof("Normal endpoints %s, %+#v", eps.Name, eps.Subsets)
return eps
}
// topology endpoints
newEps := eps.DeepCopy()
for si := range newEps.Subsets {
subnet := &newEps.Subsets[si]
subnet.Addresses = filterConcernedAddresses(svc.keys, hostName, nodes, subnet.Addresses)
subnet.NotReadyAddresses = filterConcernedAddresses(svc.keys, hostName, nodes, subnet.NotReadyAddresses)
}
klog.V(4).Infof("Topology endpoints %s: subnets from %+#v to %+#v", eps.Name, eps.Subsets, newEps.Subsets)
return newEps
}
// filterConcernedAddresses aims to filter out endpoints addresses within the same node unit
func filterConcernedAddresses(topologyKeys []string, hostName string, nodes map[types.NamespacedName]*nodeContainer,
addresses []v1.EndpointAddress) []v1.EndpointAddress {
hostNode, found := nodes[types.NamespacedName{Name: hostName}]
if !found {
return nil
}
filteredEndpointAddresses := make([]v1.EndpointAddress, 0)
for i := range addresses {
addr := addresses[i]
if nodeName := addr.NodeName; nodeName != nil {
epsNode, found := nodes[types.NamespacedName{Name: *nodeName}]
if !found {
continue
}
if hasIntersectionLabel(topologyKeys, hostNode.labels, epsNode.labels) {
filteredEndpointAddresses = append(filteredEndpointAddresses, addr)
}
}
}
return filteredEndpointAddresses
}
func hasIntersectionLabel(keys []string, n1, n2 map[string]string) bool {
if n1 == nil || n2 == nil {
return false
}
for _, key := range keys {
val1, v1found := n1[key]
val2, v2found := n2[key]
if v1found && v2found && val1 == val2 {
return true
}
}
return false
}
算法逻辑如下:
- 判断 endpoint 是否为 default kubernetes service,如果是,则将该 endpoint 转化为 wrapper 所在边缘节点的 lite-apiserver 地址(127.0.0.1)和端口(51003)
apiVersion: v1
kind: Endpoints
metadata:
annotations:
superedge.io/local-endpoint: 127.0.0.1
superedge.io/local-port: "51003"
name: kubernetes
namespace: default
subsets:
- addresses:
- ip: 172.31.0.60
ports:
- name: https
port: xxx
protocol: TCP
func genLocalEndpoints(eps *v1.Endpoints) *v1.Endpoints {
if eps.Namespace != metav1.NamespaceDefault || eps.Name != MasterEndpointName {
return eps
}
klog.V(4).Infof("begin to gen local ep %v", eps)
ipAddress, e := eps.Annotations[EdgeLocalEndpoint]
if !e {
return eps
}
portStr, e := eps.Annotations[EdgeLocalPort]
if !e {
return eps
}
klog.V(4).Infof("get local endpoint %s:%s", ipAddress, portStr)
port, err := strconv.ParseInt(portStr, 10, 32)
if err != nil {
klog.Errorf("parse int %s err %v", portStr, err)
return eps
}
ip := net.ParseIP(ipAddress)
if ip == nil {
klog.Warningf("parse ip %s nil", ipAddress)
return eps
}
nep := eps.DeepCopy()
nep.Subsets = []v1.EndpointSubset{
{
Addresses: []v1.EndpointAddress{
{
IP: ipAddress,
},
},
Ports: []v1.EndpointPort{
{
Protocol: v1.ProtocolTCP,
Port: int32(port),
Name: "https",
},
},
},
}
klog.V(4).Infof("gen new endpoint complete %v", nep)
return nep
}
这样做的目的是使边缘节点上的服务采用集群内 (InCluster) 方式访问的 apiserver 为本地的 lite-apiserver,而不是云端的 apiserver
- 从 storageCache.servicesMap cache 中根据 endpoint 名称 (namespace/name) 取出对应 service,如果该 service 没有 topologyKeys 则无需做拓扑转化 (非service group)
func getTopologyKeys(objectMeta *metav1.ObjectMeta) []string {
if !hasTopologyKey(objectMeta) {
return nil
}
var keys []string
keyData := objectMeta.Annotations[TopologyAnnotationsKey]
if err := json.Unmarshal([]byte(keyData), &keys); err != nil {
klog.Errorf("can't parse topology keys %s, %v", keyData, err)
return nil
}
return keys
}
- 调用 filterConcernedAddresses 过滤 endpoint.Subsets Addresses 以及 NotReadyAddresses,只保留同一个 service topologyKeys 中的 endpoint
// filterConcernedAddresses aims to filter out endpoints addresses within the same node unit
func filterConcernedAddresses(topologyKeys []string, hostName string, nodes map[types.NamespacedName]*nodeContainer,
addresses []v1.EndpointAddress) []v1.EndpointAddress {
hostNode, found := nodes[types.NamespacedName{Name: hostName}]
if !found {
return nil
}
filteredEndpointAddresses := make([]v1.EndpointAddress, 0)
for i := range addresses {
addr := addresses[i]
if nodeName := addr.NodeName; nodeName != nil {
epsNode, found := nodes[types.NamespacedName{Name: *nodeName}]
if !found {
continue
}
if hasIntersectionLabel(topologyKeys, hostNode.labels, epsNode.labels) {
filteredEndpointAddresses = append(filteredEndpointAddresses, addr)
}
}
}
return filteredEndpointAddresses
}
func hasIntersectionLabel(keys []string, n1, n2 map[string]string) bool {
if n1 == nil || n2 == nil {
return false
}
for _, key := range keys {
val1, v1found := n1[key]
val2, v2found := n2[key]
if v1found && v2found && val1 == val2 {
return true
}
}
return false
}
注意:如果 wrapper 所在边缘节点没有 service topologyKeys 标签,则也无法访问该 service
回到 rebuildEndpointsMap,在调用 pruneEndpoints 刷新了同一个拓扑域内的 endpoint 后,会将修改后的 endpoints 赋值给 storageCache.endpointsMap [endpoint]. modified (该字段记录了拓扑感知后修改的endpoints)。
func (nh *nodeHandler) add(node *v1.Node) {
sc := nh.cache
sc.mu.Lock()
nodeKey := types.NamespacedName{Namespace: node.Namespace, Name: node.Name}
klog.Infof("Adding node %v", nodeKey)
sc.nodesMap[nodeKey] = &nodeContainer{
node: node,
labels: node.Labels,
}
// update endpoints
changedEps := sc.rebuildEndpointsMap()
sc.mu.Unlock()
for _, eps := range changedEps {
sc.endpointsChan <- eps
}
}
// rebuildEndpointsMap updates all endpoints stored in storageCache.endpointsMap dynamically and constructs relevant modified events
func (sc *storageCache) rebuildEndpointsMap() []watch.Event {
evts := make([]watch.Event, 0)
for name, endpointsContainer := range sc.endpointsMap {
newEps := pruneEndpoints(sc.hostName, sc.nodesMap, sc.servicesMap, endpointsContainer.endpoints, sc.wrapperInCluster)
if apiequality.Semantic.DeepEqual(newEps, endpointsContainer.modified) {
continue
}
sc.endpointsMap[name].modified = newEps
evts = append(evts, watch.Event{
Type: watch.Modified,
Object: newEps,
})
}
return evts
}
另外,如果 endpoints (拓扑感知后修改的 endpoints) 发生改变,会构建 watch event,传递给 endpoints handler (interceptEndpointsRequest) 处理
2、ServiceEventHandler
storageCache.servicesMap 结构体 key 为 service 名称 (namespace/name),value 为 serviceContainer,包含如下数据:
- svc:service对象
- keys:service topologyKeys
对于 service 资源的改动,这里用 Update event 说明:
func (sh *serviceHandler) update(service *v1.Service) {
sc := sh.cache
sc.mu.Lock()
serviceKey := types.NamespacedName{Namespace: service.Namespace, Name: service.Name}
klog.Infof("Updating service %v", serviceKey)
newTopologyKeys := getTopologyKeys(&service.ObjectMeta)
serviceContainer, found := sc.servicesMap[serviceKey]
if !found {
sc.mu.Unlock()
klog.Errorf("update non-existed service, %v", serviceKey)
return
}
sc.serviceChan <- watch.Event{
Type: watch.Modified,
Object: service,
}
serviceContainer.svc = service
// return directly when topologyKeys of service stay unchanged
if reflect.DeepEqual(serviceContainer.keys, newTopologyKeys) {
sc.mu.Unlock()
return
}
serviceContainer.keys = newTopologyKeys
// update endpoints
changedEps := sc.rebuildEndpointsMap()
sc.mu.Unlock()
for _, eps := range changedEps {
sc.endpointsChan <- eps
}
}
逻辑如下:
- 获取 service topologyKeys
- 构建 service event.Modified event
- 比较 service topologyKeys 与已经存在的是否有差异
- 如果有差异则更新 topologyKeys,且调用 rebuildEndpointsMap刷新该 service 对应的 endpoints,如果 endpoints 发生变化,则构建 endpoints watch event,传递给 endpoints handler (interceptEndpointsRequest) 处理
3、EndpointsEventHandler
storageCache.endpointsMap 结构体 key 为 endpoints 名称(namespace/name),value 为 endpointsContainer,包含如下数据:
- endpoints:拓扑修改前的 endpoints
- modified:拓扑修改后的 endpoints
对于 endpoints 资源的改动,这里用 Update event 说明:
func (eh *endpointsHandler) update(endpoints *v1.Endpoints) {
sc := eh.cache
sc.mu.Lock()
endpointsKey := types.NamespacedName{Namespace: endpoints.Namespace, Name: endpoints.Name}
klog.Infof("Updating endpoints %v", endpointsKey)
endpointsContainer, found := sc.endpointsMap[endpointsKey]
if !found {
sc.mu.Unlock()
klog.Errorf("Updating non-existed endpoints %v", endpointsKey)
return
}
endpointsContainer.endpoints = endpoints
newEps := pruneEndpoints(sc.hostName, sc.nodesMap, sc.servicesMap, endpoints, sc.wrapperInCluster)
changed := !apiequality.Semantic.DeepEqual(endpointsContainer.modified, newEps)
if changed {
endpointsContainer.modified = newEps
}
sc.mu.Unlock()
if changed {
sc.endpointsChan <- watch.Event{
Type: watch.Modified,
Object: newEps,
}
}
}
逻辑如下:
- 更新 endpointsContainer.endpoint 为新的 endpoints 对象
- 调用 pruneEndpoints 获取拓扑刷新后的 endpoints
- 比较 endpointsContainer.modified 与新刷新后的 endpoints
- 如果有差异则更新 endpointsContainer.modified,则构建 endpoints watch event,传递给 endpoints handler (interceptEndpointsRequest) 处理
在分析完NodeEventHandler,ServiceEventHandler以及EndpointsEventHandler之后,我们回到具体的http handler List&Watch处理逻辑上,这里以endpoints为例:
func (s *interceptorServer) interceptEndpointsRequest(handler http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodGet || !strings.HasPrefix(r.URL.Path, "/api/v1/endpoints") {
handler.ServeHTTP(w, r)
return
}
queries := r.URL.Query()
acceptType := r.Header.Get("Accept")
info, found := s.parseAccept(acceptType, s.mediaSerializer)
if !found {
klog.Errorf("can't find %s serializer", acceptType)
w.WriteHeader(http.StatusBadRequest)
return
}
encoder := scheme.Codecs.EncoderForVersion(info.Serializer, v1.SchemeGroupVersion)
// list request
if queries.Get("watch") == "" {
w.Header().Set("Content-Type", info.MediaType)
allEndpoints := s.cache.GetEndpoints()
epsItems := make([]v1.Endpoints, 0, len(allEndpoints))
for _, eps := range allEndpoints {
epsItems = append(epsItems, *eps)
}
epsList := &v1.EndpointsList{
Items: epsItems,
}
err := encoder.Encode(epsList, w)
if err != nil {
klog.Errorf("can't marshal endpoints list, %v", err)
w.WriteHeader(http.StatusInternalServerError)
return
}
return
}
// watch request
timeoutSecondsStr := r.URL.Query().Get("timeoutSeconds")
timeout := time.Minute
if timeoutSecondsStr != "" {
timeout, _ = time.ParseDuration(fmt.Sprintf("%ss", timeoutSecondsStr))
}
timer := time.NewTimer(timeout)
defer timer.Stop()
flusher, ok := w.(http.Flusher)
if !ok {
klog.Errorf("unable to start watch - can't get http.Flusher: %#v", w)
w.WriteHeader(http.StatusMethodNotAllowed)
return
}
e := restclientwatch.NewEncoder(
streaming.NewEncoder(info.StreamSerializer.Framer.NewFrameWriter(w),
scheme.Codecs.EncoderForVersion(info.StreamSerializer, v1.SchemeGroupVersion)),
encoder)
if info.MediaType == runtime.ContentTypeProtobuf {
w.Header().Set("Content-Type", runtime.ContentTypeProtobuf+";stream=watch")
} else {
w.Header().Set("Content-Type", runtime.ContentTypeJSON)
}
w.Header().Set("Transfer-Encoding", "chunked")
w.WriteHeader(http.StatusOK)
flusher.Flush()
for {
select {
case <-r.Context().Done():
return
case <-timer.C:
return
case evt := <-s.endpointsWatchCh:
klog.V(4).Infof("Send endpoint watch event: %+#v", evt)
err := e.Encode(&evt)
if err != nil {
klog.Errorf("can't encode watch event, %v", err)
return
}
if len(s.endpointsWatchCh) == 0 {
flusher.Flush()
}
}
}
})
}
逻辑如下:
- 如果为List请求,则调用 GetEndpoints 获取拓扑修改后的 endpoints 列表,并返回
func (sc *storageCache) GetEndpoints() []*v1.Endpoints {
sc.mu.RLock()
defer sc.mu.RUnlock()
epList := make([]*v1.Endpoints, 0, len(sc.endpointsMap))
for _, v := range sc.endpointsMap {
epList = append(epList, v.modified)
}
return epList
}
- 如果为 Watch 请求,则不断从 storageCache.endpointsWatchCh 管道中接受 watch event,并返回
interceptServiceRequest 逻辑与 interceptEndpointsRequest 一致,这里不再赘述。
总结
- SuperEdge service group 利用 application-grid-wrapper 实现拓扑感知,完成了同一个 nodeunit 内服务的闭环访问
- service group 实现的拓扑感知和 Kubernetes 社区原生实现对比,有如下区别:
- service group 拓扑 key 可以自定义,也即为 gridUniqKey,使用起来更加灵活;而社区实现目前只有三种选择:"kubernetes.io/hostname","topology.kubernetes.io/zone"以及"topology.kubernetes.io/region"
- service group 只能填写一个拓扑 key,也即只能访问本拓扑域内有效的 endpoint,无法访问其它拓扑域的 endpoint;而社区可以通过 topologyKey 列表以及"*"实现其它备选拓扑域 endpoint 的访问
- ServiceGrid Controller 负责根据 ServiceGrid 产生对应的 service(包含由serviceGrid.Spec.GridUniqKey构成的 topologyKeys annotations),逻辑和 DeploymentGrid Controller 整体一致,如下:
- 创建并维护 service group 需要的若干 CRDs (包括:ServiceGrid)
- 监听 ServiceGrid event,并填充 ServiceGrid 到工作队列中;循环从队列中取出ServiceGrid进行解析,创建并且维护对应的 service
- 监听 service event,并将相关的 ServiceGrid 塞到工作队列中进行上述处理,协助上述逻辑达到整体 reconcile 逻辑
- 为了实现Kubernetes零侵入,需要在 kube-proxy 与 apiserver 通信之间添加一层 wrapper,调用链路如下:
kube-proxy -> application-grid-wrapper -> lite-apiserver -> kube-apiserver
- application-grid-wrapper 是一个 http server,接受来自 kube-proxy 的请求,同时维护一个资源缓存,处理函数由外到内依次如下:
- debug:接受 debug 请求,返回 wrapper pprof 运行信息
- logger:打印请求日志
- node:接受kube-proxy node GET (/api/v1/nodes/{node}) 请求,并返回 node 信息
- event:接受 kube-proxy events POST (/events) 请求,并将请求转发给 lite-apiserver
- service:接受 kube-proxy service List&Watch (/api/v1/services) 请求,并根据 storageCache 内容返回 (GetServices)。
- endpoint:接受 kube-proxy endpoint List&Watch(/api/v1/endpoints) 请求,并根据storageCache 内容返回 (GetEndpoints)。
- wrapper 为了实现拓扑感知,维护了一个资源cache,包括:node,service,endpoint,同时注册了相关 event 处理函数。核心拓扑算法逻辑为:调用 filterConcernedAddresses 过滤 endpoint.Subsets Addresses 以及 NotReadyAddresses,只保留同一个 service topologyKeys 中的 endpoint。另外,如果 wrapper 所在边缘节点没有 service topologyKeys 标签,则也无法访问该 service。
- wrapper 接受来自 kube-proxy 对 endpoints 以及 service 的 List&Watch 请求,以 endpoints 为例:如果为List请求,则调用 GetEndpoints 获取拓扑修改后的 endpoints 列表,并返回;如果为 Watch 请求,则不断从 storageCache.endpointsWatchCh 管道中接受 watch event,并返回。service逻辑与 endpoints 一致。
展望
目前 SuperEdge service group 实现的拓扑算法功能更加灵活方便,如何处理与 Kubernetes 社区 service topology awareness 之间的关系值得探索,建议将 SuperEdge 拓扑算法推到社区
Refs
一文读懂SuperEdge拓扑算法的更多相关文章
- 一文读懂 SuperEdge 边缘容器架构与原理
前言 superedge是腾讯推出的Kubernetes-native边缘计算管理框架.相比openyurt以及kubeedge,superedge除了具备Kubernetes零侵入以及边缘自治特性, ...
- 一文读懂 SuperEdge 云边隧道
作者 李腾飞,腾讯容器技术研发工程师,腾讯云TKE后台研发,SuperEdge核心开发成员. 杜杨浩,腾讯云高级工程师,热衷于开源.容器和Kubernetes.目前主要从事镜像仓库,Kubernete ...
- 一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm)
一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25 16:29:19 对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也 ...
- [转帖]MerkleDAG全面解析 一文读懂什么是默克尔有向无环图
MerkleDAG全面解析 一文读懂什么是默克尔有向无环图 2018-08-16 15:58区块链/技术 MerkleDAG作为IPFS的核心数据结构,它融合了Merkle Tree和DAG的优点,今 ...
- 一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现
一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现 导读:近日,马云.马化腾.李彦宏等互联网大佬纷纷亮相2018世界人工智能大会,并登台演讲.关于人工智能的现状与未来,他们提出了各自的观点,也引 ...
- 即时通讯新手入门:一文读懂什么是Nginx?它能否实现IM的负载均衡?
本文引用了“蔷薇Nina”的“Nginx 相关介绍(Nginx是什么?能干嘛?)”一文部分内容,感谢作者的无私分享. 1.引言 Nginx(及其衍生产品)是目前被大量使用的服务端反向代理和负载均衡 ...
- 一文读懂MySQL的事务隔离级别及MVCC机制
回顾前文: 一文学会MySQL的explain工具 一文读懂MySQL的索引结构及查询优化 (同时再次强调,这几篇关于MySQL的探究都是基于5.7版本,相关总结与结论不一定适用于其他版本) 就软件开 ...
- 一文读懂HTTP/2及HTTP/3特性
摘要: 学习 HTTP/2 与 HTTP/3. 前言 HTTP/2 相比于 HTTP/1,可以说是大幅度提高了网页的性能,只需要升级到该协议就可以减少很多之前需要做的性能优化工作,当然兼容问题以及如何 ...
- 一文读懂高性能网络编程中的I/O模型
1.前言 随着互联网的发展,面对海量用户高并发业务,传统的阻塞式的服务端架构模式已经无能为力.本文(和下篇<高性能网络编程(六):一文读懂高性能网络编程中的线程模型>)旨在为大家提供有用的 ...
随机推荐
- php 配置主机虚拟目录(使用虚拟域名访问 127.0.0.1) 一点也不好使?????
php 配置主机虚拟目录(使用虚拟域名访问 127.0.0.1)steps:1>打开目录 D:\xwamp\bin\apache\apache2.4.9\conf 修改文件 httpd ...
- XSS (跨站脚本攻击) 的原理分析,测试 && 应对措施
1 1 1 XSS (跨站脚本攻击) 的原理分析,测试 1 demo: <!DOCTYPE html> <html lang="en"> <head& ...
- empty Checker
empty Checker "use strict"; /** * * @author xgqfrms * @license MIT * @copyright xgqfrms * ...
- Google IO & 2019
Google IO & 2019 Google IO Recap \ https://www.techradar.com/news/google-io-2019-keynote https:/ ...
- 旅游玩乐 业务组件 UI 交互
旅游玩乐 业务组件 UI 交互 旅游业务组件 ctrip PC web https://piao.ctrip.com/dest/t4651499.html M web https://m.ctrip. ...
- NGK数字增益平台的算力是什么?
今年的币价回暖带来了新一轮的"信仰充值",部分投资者对比特币的兴趣从购买向更源头的算力转移.随着比特币开采数量逐渐减少,全网算力一直在增加,算力难度也是越来越高.同时在算力行业中竞 ...
- go-admin在线开发平台学习-2[程序结构分析]
紧接着上一篇,本文我们对go-admin下载后的源码进行分析. 首先对项目所使用的第三方库进行分析,了解作者使用的库是否是通用的官方库可以有助于我们更快地阅读程序.接着对项目的main()方法进行分析 ...
- MYSQL 悲观锁和乐观锁简单介绍及实现
1:悲观锁 1.1 特点: 每次查询都会进行锁行,怕"其他人"进行数据的修改. 1.2 实现步骤: 步骤1:开启事务test1,并对id=2的记录进行查询,并加锁,如: 步骤2 ...
- Java 8 中Sort排序原理:
总的来说,java中Arrays.sort使用了两种排序方法,快速排序和优化的合并排序.Collections.sort方法底层就是调用的Arrays.sort方法. 快速排序主要是对那些基本类型数据 ...
- Innodb的存储及缓存
参考[mysql技术内幕] 一.mysql体系结构和存储引擎 1.数据库与数据库实例 数据库:物理操作系统文件或者其他文件组成的集合: 数据库实例:有数据库后台进程/线程和一个共享内存区域组成. 数据 ...