numpy get started

导入numpy库,并查看numpy版本

import numpy as np
np.__version__
'1.14.0'

一、创建ndarray

1. 使用np.array()由python list创建

参数为列表:

[1, 4, 2, 5, 3]

注意:

  • numpy默认ndarray的所有元素的类型是相同的
  • 如果传进来的列表中包含不同的类型,则统一为同一类型,优先级:str>float>int
data = [1, 2, 3]
nd = np.array(data)
nd
array([1, 2, 3])
type(nd)
#ndarray 这样的数据
#查看整体的类型
numpy.ndarray
type(data)
list
nd.dtype
#查看数据的类型
dtype('int32')
nd1 = np.array([1,2,3.2])
nd1.dtype
#统一的原则 int < float < string
dtype('float64')
nd2 = np.array([1,2,3.4, "qwe"])
nd2.dtype
dtype('<U32')
nd3 = np.array([[1,2],[3,4]])
nd3
array([[1, 2],
[3, 4]])
nd4 = np.array([[[1,2],[3,4]],[[1,2],[3,4]]])
nd4
array([[[1, 2],
[3, 4]], [[1, 2],
[3, 4]]])
nd4.shape
(2, 2, 2)
#扩展
import matplotlib.pyplot as plt
cat = plt.imread("./cat.jpg")
type(cat)
numpy.ndarray
plt.imshow(cat[:300,:200])
plt.show()

cat.shape
#查看形状的 rgb jpg 0-255
(456, 730, 3)
cat
#三维的数据
array([[[231, 186, 131],
[232, 187, 132],
[233, 188, 133],
...,
[100, 54, 54],
[ 92, 48, 47],
[ 85, 43, 44]], [[232, 187, 132],
[232, 187, 132],
[233, 188, 133],
...,
[100, 54, 54],
[ 92, 48, 47],
[ 84, 42, 43]], [[232, 187, 132],
[233, 188, 133],
[233, 188, 133],
...,
[ 99, 53, 53],
[ 91, 47, 46],
[ 83, 41, 42]], ..., [[199, 119, 82],
[199, 119, 82],
[200, 120, 83],
...,
[189, 99, 65],
[187, 97, 63],
[187, 97, 63]], [[199, 119, 82],
[199, 119, 82],
[199, 119, 82],
...,
[188, 98, 64],
[186, 96, 62],
[188, 95, 62]], [[199, 119, 82],
[199, 119, 82],
[199, 119, 82],
...,
[188, 98, 64],
[188, 95, 62],
[188, 95, 62]]], dtype=uint8)

2. 使用np的routines函数创建

包含以下常见创建方法:

  1. np.ones(shape, dtype=None, order='C')
ones = np.ones((456,730,3), dtype = "float")
#shape 形状, 元祖 ones
array([[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], [[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], [[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], ..., [[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], [[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], [[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]])
plt.imshow(ones)
plt.show()
#0-1 0 代表黑色的 1 白色的 png格式的图片

#切片赋值
ones[::,::,1:] = 0
ones
array([[[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
...,
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.]], [[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
...,
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.]], [[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
...,
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.]], ..., [[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
...,
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.]], [[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
...,
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.]], [[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
...,
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.]]])
plt.imshow(ones)
plt.show()
#1 0 0

ones[::,::,0] = 0.3
ones
array([[[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
...,
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ]], [[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
...,
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ]], [[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
...,
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ]], ..., [[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
...,
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ]], [[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
...,
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ]], [[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
...,
[0.3, 0. , 0. ],
[0.3, 0. , 0. ],
[0.3, 0. , 0. ]]])
plt.imshow(ones)
plt.show()

  1. np.zeros(shape, dtype=float, order='C')
zeros = np.zeros((456,730,3), dtype = "float")
zeros
array([[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], ..., [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]])
plt.imshow(zeros)

<matplotlib.image.AxesImage at 0x9992e80>

  1. np.full(shape, fill_value, dtype=None, order='C')
nd4 = np.full(12, fill_value=1024)
nd4
array([1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024])
#变形,注意 你要变形的数据有多少? 不能超过变形总的长度
#cannot reshape array of size 12 into shape (3,5)
nd5 = nd4.reshape((3,5))
nd5
---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

<ipython-input-40-0baec20d7413> in <module>()
1 #变形
----> 2 nd5 = nd4.reshape((3,5))
3 nd5 ValueError: cannot reshape array of size 12 into shape (3,5)
nd5 = nd4.reshape((1,12))
nd5
#reshape在咱们以后的学习经常使用
array([[1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024]])
#扩展
cat
array([[[231, 186, 131],
[232, 187, 132],
[233, 188, 133],
...,
[100, 54, 54],
[ 92, 48, 47],
[ 85, 43, 44]], [[232, 187, 132],
[232, 187, 132],
[233, 188, 133],
...,
[100, 54, 54],
[ 92, 48, 47],
[ 84, 42, 43]], [[232, 187, 132],
[233, 188, 133],
[233, 188, 133],
...,
[ 99, 53, 53],
[ 91, 47, 46],
[ 83, 41, 42]], ..., [[199, 119, 82],
[199, 119, 82],
[200, 120, 83],
...,
[189, 99, 65],
[187, 97, 63],
[187, 97, 63]], [[199, 119, 82],
[199, 119, 82],
[199, 119, 82],
...,
[188, 98, 64],
[186, 96, 62],
[188, 95, 62]], [[199, 119, 82],
[199, 119, 82],
[199, 119, 82],
...,
[188, 98, 64],
[188, 95, 62],
[188, 95, 62]]], dtype=uint8)
cat.shape
(456, 730, 3)
#需求:把猫的图片颠倒一下
cat2 = cat[::-1,::-1,::]
plt.imshow(cat2)
<matplotlib.image.AxesImage at 0x99d7eb8>

  1. np.eye(N, M=None, k=0, dtype=float)

    对角线为1其他的位置为0
#产生一个  单元矩阵
np.eye(5)
array([[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.]])
#每一个有解的矩阵  到最后都可以化成单元矩阵     满秩矩阵

2x + 3y + 4z = 12
4x + 7y + 8z = 32 2 3 4
4 7 8 => 最后化成单元矩阵 是没办法化成的单元矩阵
4 6 8
  1. np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
#lin  linear 线性的
np.linspace(0,10,num = 13)
array([ 0.        ,  0.83333333,  1.66666667,  2.5       ,  3.33333333,
4.16666667, 5. , 5.83333333, 6.66666667, 7.5 ,
8.33333333, 9.16666667, 10. ])
np.log2(4)
2.0
np.logspace(-3,1,2)
array([1.e-03, 1.e+01])
  1. np.arange([start, ]stop, [step, ]dtype=None)
#我会经常写
np.arange(start = 5, stop = 10, step = 2,dtype = "float")
array([5., 7., 9.])
np.arange(0,150,10)
array([  0,  10,  20,  30,  40,  50,  60,  70,  80,  90, 100, 110, 120,
130, 140])
  1. np.random.randint(low, high=None, size=None, dtype='l')
np.random.randint(0,150,size = 10)
array([ 57, 116, 133,  84, 141,  32,  63,  91,  93,  16])
dog = np.random.randint(0,255,size = (456,730,3))
dog.shape
(456, 730, 3)
cat.dtype
dtype('uint8')
dog.dtype
dtype('int32')
#数据类型转换
dog = dog.astype('uint8')
plt.imshow(dog)
<matplotlib.image.AxesImage at 0xfcca828>

  1. np.random.randn(d0, d1, ..., dn)

标准正太分布

np.random.randn(10,2,1)
#正太分布会搞出来数据,是两边低,中间高的数据
array([[[ 1.39438673],
[-0.78456615]], [[-0.59132977],
[ 2.23663625]], [[ 0.61258477],
[-0.84729158]], [[ 1.37855508],
[ 1.697815 ]], [[-0.06004384],
[ 0.98147252]], [[-1.20190404],
[-0.77774525]], [[ 1.34400589],
[ 0.23112796]], [[-0.31579586],
[-0.11644608]], [[-0.11822406],
[ 0.26001606]], [[ 0.03766789],
[ 0.80169127]]])

9)np.random.normal(loc=0.0, scale=1.0, size=None)

#只是需要知道他可以搞出来数据
np.random.normal(loc = 175, scale =10,size = 10 )
array([176.45148898, 179.9089715 , 173.65923279, 172.36118888,
169.66272673, 158.76980334, 165.3742424 , 173.52898147,
175.84535943, 183.92875259])
  1. np.random.random(size=None)

生成0到1的随机数,左闭右开

np.random.random(size = (2,2))

array([[0.64468214, 0.54496107],
[0.20529068, 0.0482465 ]])

使用随机数成成一张图片

二、ndarray的属性

4个必记参数:

ndim:维度

shape:形状(各维度的长度)

size:总长度

dtype:元素类型

cat = plt.imread("./cat.jpg")
cat
array([[[231, 186, 131],
[232, 187, 132],
[233, 188, 133],
...,
[100, 54, 54],
[ 92, 48, 47],
[ 85, 43, 44]], [[232, 187, 132],
[232, 187, 132],
[233, 188, 133],
...,
[100, 54, 54],
[ 92, 48, 47],
[ 84, 42, 43]], [[232, 187, 132],
[233, 188, 133],
[233, 188, 133],
...,
[ 99, 53, 53],
[ 91, 47, 46],
[ 83, 41, 42]], ..., [[199, 119, 82],
[199, 119, 82],
[200, 120, 83],
...,
[189, 99, 65],
[187, 97, 63],
[187, 97, 63]], [[199, 119, 82],
[199, 119, 82],
[199, 119, 82],
...,
[188, 98, 64],
[186, 96, 62],
[188, 95, 62]], [[199, 119, 82],
[199, 119, 82],
[199, 119, 82],
...,
[188, 98, 64],
[188, 95, 62],
[188, 95, 62]]], dtype=uint8)
cat.ndim
#dimension 维度的意思
3
cat.shape
#这个每天都要用,特别是数据分析
(456, 730, 3)
cat.size
998640
456*730*3
998640
cat.dtype

dtype('uint8')

三、ndarray的基本操作

1. 索引

一维与列表完全一致

多维时同理

l = [1,2,3,4,5,6]
l[-1]
#list
6
nd = np.random.randint(0,100,size = 12)
nd[2]
97
nd = np.random.randint(0,100,size =(4,4))
nd

array([[48, 85, 53, 22],
[24, 36, 26, 31],
[38, 26, 56, 47],
[22, 80, 50, 9]])
nd[0, 1]
#通过索引取出来数据
85

根据索引修改数据

nd[2,2] = 2100
nd
array([[  48,   85,   53,   22],
[ 24, 36, 26, 31],
[ 38, 26, 2100, 47],
[ 22, 80, 50, 9]])

2. 切片

一维与列表完全一致

多维时同理

nd
array([[  48,   85,   53,   22],
[ 24, 36, 26, 31],
[ 38, 26, 2100, 47],
[ 22, 80, 50, 9]])
nd[:-2]
array([[48, 85, 53, 22],
[24, 36, 26, 31]])
nd[:-2] = 10
nd
array([[  10,   10,   10,   10],
[ 10, 10, 10, 10],
[ 38, 26, 2100, 47],
[ 22, 80, 50, 9]])
np.random.randint(0,10,size = (2,1))
array([[2],
[8]])
nd[:2, 1:3] = np.random.randint(0,10,size = (2,1))
nd
#广播机制,如果在赋值的时候,不充分,numpy会自动进行复制
array([[  10,    0,    0,   10],
[ 10, 8, 8, 10],
[ 38, 26, 2100, 47],
[ 22, 80, 50, 9]])

将数据反转,例如[1,2,3]---->[3,2,1]

nd1 = np.random.randint(0,100,size = 11)
nd1
array([53,  0, 12, 83, 98, 46, 36, 96, 21, 51, 34])
nd1[::-1]
array([34, 51, 21, 96, 36, 46, 98, 83, 12,  0, 53])
#::叫步幅
nd1[::-2]
array([34, 21, 36, 98, 12, 53])
nd
array([[  10,    0,    0,   10],
[ 10, 8, 8, 10],
[ 38, 26, 2100, 47],
[ 22, 80, 50, 9]])
nd[::1,::-1]
array([[  10,    0,    0,   10],
[ 10, 8, 8, 10],
[ 47, 2100, 26, 38],
[ 9, 50, 80, 22]])
nd[::-1,::-1]
array([[   9,   50,   80,   22],
[ 47, 2100, 26, 38],
[ 10, 8, 8, 10],
[ 10, 0, 0, 10]])

两个::进行切片


3. 变形

使用reshape函数,注意参数是一个tuple!

#扩展
cat = plt.imread("./cat.jpg")
cat_f = cat/255.0
plt.imshow(cat_f)
<matplotlib.image.AxesImage at 0xd380b70>

fish = plt.imread("./fish.png")
plt.imshow(fish)
<matplotlib.image.AxesImage at 0xd2b3940>

fish
array([[[0.29411766, 0.39215687, 0.46666667],
[0.46666667, 0.4862745 , 0.49803922],
[0.4627451 , 0.4862745 , 0.5019608 ],
...,
[0.4627451 , 0.48235294, 0.49803922],
[0.45882353, 0.47843137, 0.49803922],
[0.21960784, 0.33333334, 0.44313726]], [[0.2901961 , 0.3764706 , 0.44313726],
[0.627451 , 0.6156863 , 0.60784316],
[0.85490197, 0.85490197, 0.84705883],
...,
[0.8627451 , 0.85882354, 0.8509804 ],
[0.8509804 , 0.8509804 , 0.84313726],
[0.30588236, 0.42352942, 0.5254902 ]], [[0.28235295, 0.37254903, 0.4392157 ],
[0.6666667 , 0.6627451 , 0.654902 ],
[1. , 1. , 1. ],
...,
[1. , 1. , 1. ],
[1. , 1. , 1. ],
[0.35686275, 0.4745098 , 0.5764706 ]], ..., [[0.4509804 , 0.45882353, 0.45882353],
[0.6509804 , 0.6509804 , 0.64705884],
[0.99215686, 0.99215686, 0.9843137 ],
...,
[1. , 0.99607843, 0.9882353 ],
[0.9843137 , 0.9882353 , 0.98039216],
[0.36078432, 0.49019608, 0.6 ]], [[0.4509804 , 0.45882353, 0.45882353],
[0.6509804 , 0.6509804 , 0.64705884],
[0.99215686, 0.99215686, 0.9843137 ],
...,
[1. , 0.99607843, 0.9882353 ],
[0.9843137 , 0.9882353 , 0.98039216],
[0.36078432, 0.49019608, 0.6 ]], [[0.44705883, 0.45490196, 0.45490196],
[0.65882355, 0.654902 , 0.654902 ],
[1. , 1. , 1. ],
...,
[1. , 1. , 1. ],
[1. , 1. , 1. ],
[0.36078432, 0.49411765, 0.6 ]]], dtype=float32)
#拿出来鱼头
fish_head = fish[50:175, 50:180]
plt.imshow(fish_head)
<matplotlib.image.AxesImage at 0xd41bd30>

#把猫挑选出来一部分,把鱼头贴上去
cat_f[120:245,220:350] = fish_head
# cat.flags.writeable = True
# fish.flags.writeable = True plt.imshow(cat_f)
#肯定会报错,一个是png 一个是jpg
<matplotlib.image.AxesImage at 0xd4be9b0>

4. 级联

  1. np.concatenate()

    级联需要注意的点:
  • 级联的参数是列表:一定要加中括号或小括号
  • 维度必须相同
  • 形状相符
  • 【重点】级联的方向默认是shape这个tuple的第一个值所代表的维度方向
  • 可通过axis参数改变级联的方向
import numpy as np
nd1 = np.random.randint(0,10,size = (4,6))
nd2 = np.random.randint(50,100,size =(2,6)) np.concatenate([nd1, nd2])
#第一个参数 可以传一个list或者tuple 第二个参数是轴 axis
#默认的轴等于0 行上面进行级联
array([[ 3,  0,  8,  6,  9,  4],
[ 8, 4, 4, 1, 0, 1],
[ 4, 2, 5, 9, 4, 9],
[ 0, 6, 6, 3, 5, 4],
[50, 84, 96, 68, 78, 76],
[96, 51, 61, 65, 67, 57]])
nd1 = np.random.randint(10,20,size = (3,4))
nd2 = np.random.randint(40,60,size = (3,2))
np.concatenate((nd1,nd2), axis = 1)
array([[12, 17, 14, 12, 56, 44],
[13, 17, 17, 17, 51, 49],
[13, 16, 18, 15, 45, 59]])
  1. np.hstack与np.vstack

    水平级联与垂直级联,处理自己,进行维度的变更
nd3 = np.random.randint(0,10,size = (10,1))
nd3
array([[8],
[5],
[1],
[2],
[3],
[8],
[0],
[7],
[9],
[5]])
#hstack  水平级联
#horizontal :水平的
np.hstack(nd3)
#变成水平的之后,维度也变了
array([8, 5, 1, 2, 3, 8, 0, 7, 9, 5])
#vstack  垂直级联
#vertical :垂直的
nd4 = np.random.randint(-10,10,size = 10)
nd4
array([-10,  -2,   3,   7,   1,   6,   6,  -7,   0,  -1])
np.vstack(nd4)
array([[-10],
[ -2],
[ 3],
[ 7],
[ 1],
[ 6],
[ 6],
[ -7],
[ 0],
[ -1]])

5. 切分

与级联类似,三个函数完成切分工作:

  • np.split
  • np.vsplit
  • np.hsplit
nd = np.random.randint(0,100,size = (5,6))
nd
array([[44, 65, 84,  1, 83, 71],
[14, 71, 39, 21, 11, 27],
[27, 2, 89, 5, 13, 70],
[97, 63, 91, 45, 26, 71],
[86, 22, 3, 90, 56, 54]])
np.vsplit(nd,[1,4])
[array([[44, 65, 84,  1, 83, 71]]), array([[14, 71, 39, 21, 11, 27],
[27, 2, 89, 5, 13, 70],
[97, 63, 91, 45, 26, 71]]), array([[86, 22, 3, 90, 56, 54]])]
np.hsplit(nd,[1,3,8])
[array([[44],
[14],
[27],
[97],
[86]]), array([[65, 84],
[71, 39],
[ 2, 89],
[63, 91],
[22, 3]]), array([[ 1, 83, 71],
[21, 11, 27],
[ 5, 13, 70],
[45, 26, 71],
[90, 56, 54]]), array([], shape=(5, 0), dtype=int32)]
nd
array([[44, 65, 84,  1, 83, 71],
[14, 71, 39, 21, 11, 27],
[27, 2, 89, 5, 13, 70],
[97, 63, 91, 45, 26, 71],
[86, 22, 3, 90, 56, 54]])
np.split(nd,[2], axis = 1)
#axis = 0 默认的一种情况 行上面
[array([[44, 65],
[14, 71],
[27, 2],
[97, 63],
[86, 22]]), array([[84, 1, 83, 71],
[39, 21, 11, 27],
[89, 5, 13, 70],
[91, 45, 26, 71],
[ 3, 90, 56, 54]])]

6. 副本

所有赋值运算不会为ndarray的任何元素创建副本。对赋值后的对象的操作也对原来的对象生效。

nd = np.random.randint(0,10,size = 6)
nd
array([9, 8, 4, 4, 1, 7])
nd[5] = 1000
nd
array([   9,    8,    4,    4,    1, 1000])

可使用copy()函数创建副本

nd_copy = nd.copy()
nd_copy
array([   9,    8,    4,    4,    1, 1000])

四、ndarray的聚合操作

1. 求和np.sum

np.power([2,3,4],3)
array([ 8, 27, 64], dtype=int32)
nd = np.random.randint(0,10,size = (3,4))
nd
array([[1, 1, 6, 7],
[2, 7, 0, 1],
[6, 6, 8, 0]])
np.power(nd, 2)
array([[ 1,  1, 36, 49],
[ 4, 49, 0, 1],
[36, 36, 64, 0]], dtype=int32)
nd = np.random.randint(0,10,size =(2,3))
nd
array([[4, 8, 6],
[0, 7, 0]])
nd.sum()/6
4.166666666666667
nd.sum(axis = 1)
array([18,  7])
nd.sum(axis = 0)
array([ 4, 15,  6])
nd.mean()
#求平均值
4.166666666666667
nd.mean(axis = 0)
array([2. , 7.5, 3. ])
nd
array([[4, 8, 6],
[0, 7, 0]])
nd.argmin()
3
nd1 = np.random.randint(12,34,size = (4,5))
nd1
array([[27, 25, 30, 30, 20],
[15, 30, 15, 27, 28],
[31, 13, 27, 12, 26],
[29, 22, 23, 15, 20]])
nd1.argmin()
#非常有用!!!!
13
nd1.argmax()
10

2. 最大最小值:np.max/ np.min

同理

nd1.max()
31

3. 其他聚合操作

Function Name	NaN-safe Version	Description
np.sum np.nansum Compute sum of elements
np.prod np.nanprod Compute product of elements
np.mean np.nanmean Compute mean of elements
np.std np.nanstd Compute standard deviation
np.var np.nanvar Compute variance
np.min np.nanmin Find minimum value
np.max np.nanmax Find maximum value
np.argmin np.nanargmin Find index of minimum value
np.argmax np.nanargmax Find index of maximum value
np.median np.nanmedian Compute median of elements
np.percentile np.nanpercentile Compute rank-based statistics of elements
np.any N/A Evaluate whether any elements are true
np.all N/A Evaluate whether all elements are true
np.power 幂运算

np.sum 和 np.nansum 的区别

nan not a number

操作文件

使用pandas打开文件president_heights.csv

获取文件中的数据


五、ndarray的矩阵操作

1. 基本矩阵操作


  1. 算术运算符:
  • 加减乘除
nd = np.random.randint(0,10,size = (5,5))
nd
array([[6, 9, 2, 8, 5],
[5, 8, 3, 3, 6],
[3, 6, 3, 0, 5],
[4, 0, 6, 7, 2],
[6, 6, 8, 8, 5]])
nd + 3
#广播机制在里面
array([[ 9, 12,  5, 11,  8],
[ 8, 11, 6, 6, 9],
[ 6, 9, 6, 3, 8],
[ 7, 3, 9, 10, 5],
[ 9, 9, 11, 11, 8]])
nd/2
array([[3. , 4.5, 1. , 4. , 2.5],
[2.5, 4. , 1.5, 1.5, 3. ],
[1.5, 3. , 1.5, 0. , 2.5],
[2. , 0. , 3. , 3.5, 1. ],
[3. , 3. , 4. , 4. , 2.5]])
#系统还给咱们提供了一些方法
np.multiply(nd, 2)
#乘法
array([[12, 18,  4, 16, 10],
[10, 16, 6, 6, 12],
[ 6, 12, 6, 0, 10],
[ 8, 0, 12, 14, 4],
[12, 12, 16, 16, 10]])
np.subtract(nd,100)
#减法
array([[ -94,  -91,  -98,  -92,  -95],
[ -95, -92, -97, -97, -94],
[ -97, -94, -97, -100, -95],
[ -96, -100, -94, -93, -98],
[ -94, -94, -92, -92, -95]])
  1. 矩阵积np.dot()

矩阵乘法

nd1 = np.random.randint(0,10,size = (2,3))
nd2 = np.random.randint(0,10,size = (3,4))
np.dot(nd1,nd2)
array([[65, 54, 63],
[76, 66, 66]])

2. 广播机制

【重要】ndarray广播机制的两条规则

  • 规则一:为缺失的维度补1
  • 规则二:假定缺失元素用已有值填充

例1:

m = np.ones((2, 3))

a = np.arange(3)

求M+a


例2:

a = np.arange(3).reshape((3, 1))

b = np.arange(3)

求a+b

习题

a = np.ones((4, 1))

b = np.arange(4)

求a+b

六、ndarray的排序

小测验:

使用以上所学numpy的知识,对一个ndarray对象进行选择排序。

def Sortn(x):

代码越短越好

#必须会默写至少两个排序
nd = np.random.randint(0,100,size = 10)
nd
array([40, 20, 21, 24, 88, 42, 30, 38, 35, 76])
def sort_nd(nd):
for i in range(nd.size):
for j in range(i, nd.size):
if nd[i] > nd[j]:
nd[i],nd[j] = nd[j],nd[i]
return nd
sort_nd(nd)
array([20, 21, 24, 30, 35, 38, 40, 42, 76, 88])
nd = np.random.randint(0,100,size = 10)
nd
array([12, 56, 48, 39, 64, 15, 58, 83, 10,  0])
def sort_nd2(nd):
for i in range(nd.size):
#argmin
#获取最小值的索引值
index_min = np.argmin(nd[i:]) + i
#当i = 0 index_min = 9
#当i = 1 index_min =
nd[i] ,nd[index_min]= nd[index_min],nd[i]
return nd
sort_nd2(nd)
array([ 0, 10, 12, 15, 39, 48, 56, 58, 64, 83])

1. 快速排序

np.sort()与ndarray.sort()都可以,但有区别:

  • np.sort()不改变输入
  • ndarray.sort()本地处理,不占用空间,但改变输入
nd = np.random.randint(0,100,size = 10)
nd
array([84, 73, 91, 38,  3, 56, 43, 70, 61, 72])
np.sort(nd)
array([ 3, 38, 43, 56, 61, 70, 72, 73, 84, 91])
nd
array([84, 73, 91, 38,  3, 56, 43, 70, 61, 72])
nd.sort()
nd
array([ 3, 38, 43, 56, 61, 70, 72, 73, 84, 91])

2. 部分排序

np.partition(a,k)

有的时候我们不是对全部数据感兴趣,我们可能只对最小或最大的一部分感兴趣。

  • 当k为正时,我们想要得到最小的k个数
  • 当k为负时,我们想要得到最大的k个数
nd = np.random.randint(0,1000,size = 500)
nd
array([679, 723, 152, 187, 847, 859, 843, 762, 239, 132, 183, 369, 168,
949, 533, 97, 480, 851, 309, 70, 140, 741, 383, 725, 478, 762,
553, 919, 935, 408, 295, 610, 601, 74, 986, 889, 600, 210, 945,
285, 209, 719, 111, 874, 347, 630, 978, 451, 500, 366, 773, 62,
506, 610, 619, 151, 667, 936, 234, 358, 846, 767, 865, 524, 126,
856, 832, 466, 428, 341, 474, 117, 891, 579, 287, 286, 947, 687,
368, 770, 838, 7, 246, 327, 513, 425, 794, 226, 144, 692, 423,
313, 457, 31, 900, 822, 781, 678, 548, 204, 687, 872, 134, 852,
264, 720, 894, 487, 780, 959, 633, 570, 54, 949, 336, 138, 319,
683, 115, 209, 56, 469, 326, 400, 362, 373, 726, 971, 948, 376,
575, 680, 122, 657, 961, 467, 586, 136, 763, 926, 533, 698, 960,
307, 609, 636, 649, 153, 308, 906, 520, 148, 465, 567, 231, 446,
456, 757, 388, 683, 946, 412, 671, 946, 959, 867, 673, 837, 518,
369, 494, 166, 808, 188, 253, 780, 511, 888, 332, 332, 8, 645,
779, 542, 998, 512, 287, 430, 835, 608, 759, 114, 740, 107, 552,
279, 885, 491, 346, 892, 739, 711, 908, 76, 233, 715, 915, 869,
673, 458, 21, 576, 297, 389, 35, 295, 25, 486, 664, 326, 260,
7, 87, 47, 242, 579, 889, 654, 465, 250, 364, 471, 758, 329,
579, 964, 774, 722, 710, 437, 763, 252, 551, 939, 765, 988, 186,
929, 767, 548, 583, 307, 775, 147, 936, 779, 959, 915, 673, 924,
456, 127, 472, 157, 287, 427, 449, 987, 174, 469, 148, 733, 846,
193, 725, 197, 988, 833, 498, 701, 696, 369, 915, 205, 81, 978,
218, 18, 984, 937, 169, 67, 617, 711, 177, 755, 691, 983, 360,
939, 313, 11, 54, 612, 626, 774, 442, 833, 547, 304, 967, 928,
85, 552, 231, 865, 227, 71, 997, 492, 484, 782, 498, 139, 361,
27, 925, 988, 842, 279, 185, 924, 932, 799, 972, 150, 107, 875,
949, 974, 445, 908, 733, 303, 909, 658, 941, 590, 14, 992, 800,
702, 409, 84, 62, 757, 865, 917, 711, 960, 448, 417, 961, 826,
215, 406, 208, 796, 12, 208, 86, 799, 533, 755, 806, 869, 245,
493, 128, 39, 572, 171, 951, 798, 101, 676, 715, 388, 707, 98,
35, 340, 397, 743, 166, 53, 568, 460, 545, 430, 349, 971, 370,
939, 138, 346, 96, 983, 393, 297, 615, 565, 805, 665, 435, 957,
991, 726, 489, 358, 86, 278, 124, 617, 643, 150, 583, 462, 658,
802, 848, 74, 807, 201, 354, 261, 408, 759, 361, 157, 829, 687,
963, 603, 617, 54, 306, 447, 952, 440, 972, 217, 808, 341, 586,
176, 852, 682, 770, 299, 108, 975, 440, 83, 807, 968, 131, 824,
428, 996, 556, 602, 159, 613, 711, 262, 342, 355, 191, 43, 666,
209, 766, 737, 829, 857, 263, 231, 992, 605, 479, 967, 168, 770,
885, 924, 986, 867, 130, 249])
np.partition(nd,20)
array([  7,   8,   7,  27,  11,  21,  18,  25,  12,  14,  31,  43,  47,
54, 54, 35, 54, 53, 39, 35, 56, 76, 67, 74, 62, 74,
71, 62, 70, 81, 86, 84, 86, 85, 83, 87, 108, 148, 131,
205, 153, 176, 111, 115, 101, 98, 159, 183, 132, 138, 136, 171,
168, 197, 193, 151, 157, 148, 107, 150, 127, 166, 168, 169, 126,
201, 191, 174, 177, 147, 140, 117, 130, 150, 128, 185, 124, 166,
122, 97, 187, 152, 134, 188, 107, 157, 114, 204, 144, 138, 139,
208, 96, 186, 208, 297, 287, 227, 231, 226, 253, 304, 246, 279,
264, 278, 279, 286, 287, 261, 297, 234, 306, 295, 303, 218, 260,
217, 242, 209, 209, 285, 231, 299, 249, 210, 295, 250, 262, 215,
252, 209, 287, 307, 245, 263, 239, 231, 233, 307, 533, 533, 467,
493, 406, 376, 417, 388, 308, 448, 520, 373, 465, 400, 326, 446,
456, 469, 388, 409, 319, 412, 336, 445, 340, 397, 487, 460, 518,
369, 494, 545, 430, 349, 370, 361, 511, 346, 332, 332, 393, 498,
484, 542, 492, 512, 457, 430, 313, 423, 435, 489, 425, 513, 327,
358, 547, 491, 346, 442, 368, 462, 313, 474, 341, 360, 428, 466,
524, 458, 354, 408, 358, 389, 361, 506, 447, 486, 366, 326, 500,
451, 440, 347, 341, 440, 428, 369, 465, 408, 364, 471, 498, 329,
342, 355, 478, 469, 383, 437, 449, 309, 427, 480, 533, 472, 369,
479, 456, 362, 548, 583, 775, 723, 936, 779, 959, 915, 673, 924,
767, 929, 988, 765, 939, 551, 763, 987, 710, 722, 774, 733, 846,
964, 725, 579, 988, 833, 758, 701, 696, 654, 915, 889, 579, 978,
664, 576, 984, 937, 673, 869, 617, 711, 915, 755, 691, 983, 715,
939, 908, 711, 739, 612, 626, 774, 892, 833, 885, 552, 967, 928,
740, 552, 759, 865, 608, 835, 997, 998, 779, 782, 645, 888, 780,
808, 925, 988, 842, 837, 673, 924, 932, 799, 972, 867, 959, 875,
949, 974, 946, 908, 733, 671, 909, 658, 941, 590, 946, 992, 800,
702, 683, 757, 567, 757, 865, 917, 711, 960, 906, 649, 961, 826,
636, 609, 960, 796, 698, 926, 763, 799, 586, 755, 806, 869, 961,
657, 680, 575, 572, 948, 951, 798, 971, 676, 715, 726, 707, 683,
949, 570, 633, 743, 959, 780, 568, 894, 720, 852, 872, 971, 687,
939, 548, 678, 781, 983, 822, 900, 615, 565, 805, 665, 692, 957,
991, 726, 794, 838, 770, 687, 947, 617, 643, 579, 583, 891, 658,
802, 848, 832, 807, 856, 865, 767, 846, 759, 936, 667, 829, 687,
963, 603, 617, 619, 610, 773, 952, 978, 972, 630, 808, 874, 586,
719, 852, 682, 770, 945, 600, 975, 889, 986, 807, 968, 601, 824,
610, 996, 556, 602, 935, 613, 711, 919, 553, 762, 725, 741, 666,
851, 766, 737, 829, 857, 949, 762, 992, 605, 843, 967, 859, 770,
885, 924, 986, 867, 847, 679])

numpy基础用法学习的更多相关文章

  1. [学习笔记] Numpy基础 系统学习

    [学习笔记] Numpy基础 上专业选修<数据分析程序设计>课程,老师串讲了Numpy基础,边听边用jupyter敲了下--理解+笔记. 老师讲的很全很系统,有些点没有记录,在PPT里就不 ...

  2. NumPy 基础用法

    NumPy 是高性能科学计算和数据分析的基础包. 它是 pandas 等其他各种工具的基础. 主要功能: ndarray 一个多维数组结构, 高效且节省空间 无需循环对整组数据进行快速运算的数学函数 ...

  3. NumPy基础入门学习

    对于习惯使用了MATLAB的用户而言,学习NumPy这个python工具包付出的成本应该是不大的. NumPy的基本的object是多维数组,是一个有同样类型的数字等构成的一张表格,能够通过元组进行索 ...

  4. 【Numpy】python机器学习包Numpy基础知识学习

    一.安装:在之前的博客中已经写过:http://www.cnblogs.com/puyangsky/p/4763234.html 二.python数组切片知识: python中序列类有list.str ...

  5. JDBC 基础用法学习

    JDBC概述 java 数据库链接,sun公司退出的 java 访问数据库的标准规范接口 是一种用于执行SQL语句的 java API 可以作为多种关系数据库提供统一接口 是一组 java 工具类和接 ...

  6. Python Numpy shape 基础用法(转自他人的博客,如涉及到侵权,请联系我)

    Python Numpy shape 基础用法 shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度.它的输入 ...

  7. 【学习笔记】 第04章 NumPy基础:数组和矢量计算

    前言 正式开始学习Numpy,参考用书是<用Python进行数据清洗>,计划本周五之前把本书读完,关键代码全部实现一遍 NumPy基础:数组和矢量计算 按照书中所示,要搞明白具体的性能差距 ...

  8. MarkDown学习——基础用法

    目录 MarkDown开发版本MD2All基础用法 此处有代码<a id="top"></a>作为页内锚点 此处是用自动生成的目录 MarkDown是什么M ...

  9. python学习笔记(三):numpy基础

    Counter函数可以对列表中数据进行统计每一个有多少种 most_common(10)可以提取前十位 from collections import Counter a = ['q','q','w' ...

随机推荐

  1. 学习ASP.NET Core(10)-全局日志与xUnit系统测试

    上一篇我们介绍了数据塑形,HATEOAS和内容协商,并在制器方法中完成了对应功能的添加:本章我们将介绍日志和测试相关的概念,并添加对应的功能 一.全局日志 在第一章介绍项目结构时,有提到.NET Co ...

  2. 解读Spring源码之前的准备

    请忽略以下的文章,现在回过头来才发现学习源码不用如此复杂 1.IDEA 新建一个maven项目, 2.pom 中倒入 spring5 的基本包,然后利用maven 插件down下源码 3.然后就可以开 ...

  3. 君荣 TS--8200 消费机显示说明

     Err 001——不在消费时段内Err 002——非本系统卡Err 003——余额不足Err 004——级别未开放Err 005——卡已挂失Err 006——有效期未生效Err 007——已过有效期 ...

  4. 用Springboot干掉IBM的WAS-为公司省点钱

    1 那一夜,你伤害了我 今夜的雨下得凉快,小南睡得正香,突然收到远洋运维小周的电话:Hello, Are you OK? WAS有issue,快起来help me! 只见小南登陆WAS机,查看了机器日 ...

  5. UDF_获取某年某月有多少天

    UDF --获取某年某月有多少天 --drop function fn_GetDayofMonth_1 /* HLERP ( [dbo].[GetMonths] ) */ go create func ...

  6. Calculating a “Row X of Y”

    显示 “Row X of Y,” ,X是当前行,Y是总行数,  那就是 ROW_NUMBER(ORDER BY stor_id) of Count(*) OVER()此处还是以样例数据库 pub 为例 ...

  7. 看到这些常见的android面试题,你慌了吗?

    最近参加了一些Android工程师岗位的面试,总结了一些常见的考点,希望能帮到正在面试的你(答案还在整理中)! 1.Java调用函数传入实际参数时,是值传递还是引用传递? 2.单例模式的DCL方式,为 ...

  8. redis cluster集群中键的分布算法

    Redis Cluster Redis Cluster是Redis的作者 Antirez 提供的 Redis 集群方案 —— 官方多机部署方案,每组Redis Cluster是由多个Redis实例组成 ...

  9. 算法题解:最小的K个数(海量数据Top K问题)

    [本文版权归微信公众号"代码艺术"(ID:onblog)所有,若是转载请务必保留本段原创声明,违者必究.若是文章有不足之处,欢迎关注微信公众号私信与我进行交流!] 题目 输入 n ...

  10. Java | 静态嵌套类(Static Nested Class)

    前言 本文内容主要来自 Java 官方教程中的<嵌套类>章节. 本文提供的是 JDK 14 的示例代码. 定义 静态嵌套类(Static Nested Class),是 Java 中对类的 ...