Codeforces1312E Array Shrinking 区间DP
题意
给你一个数组\(a\),只要满足\(a_i=a_{i+1}\)就可以将这两个元素合并成一个值为\(a_i+1\)的元素,问数组最小长度。
解题思路
记得之前某场的F和这题差不多,当时好像是相邻且相等就可以移除这两个数问最小长度。
看到\(n\)的范围就想到区间DP了,感觉是一道挺裸的区间DP板子题。
AC代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pi;
#define x first
#define y second
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define rall(x) (x).rbegin(),(x).rend()
#define endl '\n'
const double PI=acos(-1.0);
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
int rnd(int l,int r){return l+rng()%(r-l+1);}
namespace IO{
bool REOF = 1; //为0表示文件结尾
inline char nc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && REOF && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? (REOF = 0, EOF) : *p1++;
}
template<class T>
inline bool read(T &x) {
char c = nc();bool f = 0; x = 0;
while (c<'0' || c>'9')c == '-' && (f = 1), c = nc();
while (c >= '0'&&c <= '9')x = (x << 3) + (x << 1) + (c ^ 48), c = nc();
if(f)x=-x;
return REOF;
}
template<typename T, typename... T2>
inline bool read(T &x, T2 &... rest) {
read(x);
return read(rest...);
}
inline bool need(char &c) { return ((c >= 'a') && (c <= 'z')) || ((c >= '0') && (c <= '9')) || ((c >= 'A') && (c <= 'Z')); }
// inline bool need(char &c) { return ((c >= 'a') && (c <= 'z')) || ((c >= '0') && (c <= '9')) || ((c >= 'A') && (c <= 'Z')) || c==' '; }
inline bool read_str(char *a) {
while ((*a = nc()) && need(*a) && REOF)++a; *a = '\0';
return REOF;
}
inline bool read_dbl(double &x){
bool f = 0; char ch = nc(); x = 0;
while(ch<'0'||ch>'9') {f|=(ch=='-');ch=nc();}
while(ch>='0'&&ch<='9'){x=x*10.0+(ch^48);ch=nc();}
if(ch == '.') {
double tmp = 1; ch = nc();
while(ch>='0'&&ch<='9'){tmp=tmp/10.0;x=x+tmp*(ch^48);ch=nc();}
}
if(f)x=-x;
return REOF;
}
template<class TH> void _dbg(const char *sdbg, TH h){ cerr<<sdbg<<'='<<h<<endl; }
template<class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) {
while(*sdbg!=',')cerr<<*sdbg++;
cerr<<'='<<h<<','<<' '; _dbg(sdbg+1, a...);
}
template<class T> ostream &operator<<(ostream& os, vector<T> V) {
os << "["; for (auto vv : V) os << vv << ","; return os << "]";
}
template<class T> ostream &operator<<(ostream& os, set<T> V) {
os << "["; for (auto vv : V) os << vv << ","; return os << "]";
}
template<class T> ostream &operator<<(ostream& os, map<T,T> V) {
os << "["; for (auto vv : V) os << vv << ","; return os << "]";
}
template<class L, class R> ostream &operator<<(ostream &os, pair<L,R> P) {
return os << "(" << P.st << "," << P.nd << ")";
}
#define debug(...) _dbg(#__VA_ARGS__, __VA_ARGS__)
}
using namespace IO;
const int maxn=2e5+5;
const int maxv=2e5+5;
const int mod=998244353; // 998244353 1e9+7
const int INF=1e9+7; // 1e9+7 0x3f3f3f3f 0x3f3f3f3f3f3f3f3f
const double eps=1e-12;
int dx[4]={0,1,0,-1};
//int dx[8]={1,0,-1,1,-1,1,0,-1};
int dy[4]={1,0,-1,0};
//int dy[8]={1,1,1,0,0,-1,-1,-1};
// #define ls (x<<1)
// #define rs (x<<1|1)
// #define mid ((l+r)>>1)
// #define lson ls,l,mid
// #define rson rs,mid+1,r
// int tot,head[maxn];
// struct Edge{
// int v,nxt;
// Edge(){}
// Edge(int _v,int _nxt):v(_v),nxt(_nxt){}
// }e[maxn<<1];
// void init(){
// tot=1;
// memset(head,0,sizeof(head));
// }
// void addedge(int u,int v){
// e[tot]=Edge(v,head[u]); head[u]=tot++;
// e[tot]=Edge(u,head[v]); head[v]=tot++;
// }
// void addarc(int u,int v){
// e[tot]=Edge(v,head[u]); head[u]=tot++;
// }
/**
* ********** Backlight **********
* 仔细读题
* 注意边界条件
* 记得注释输入流重定向
* 没有思路就试试逆向思维
* 加油,奥利给
*/
int n,a[505],dp[505][505],v[505][505];
void solve(){
read(n);
for(int i=1;i<=n;i++)read(a[i]),dp[i][i]=1,v[i][i]=a[i];
for(int l=2;l<=n;l++){
for(int i=1;i<=n-l+1;i++){
int j=i+l-1;
dp[i][j]=INF;
for(int k=i;k<=j-1;k++){
if(dp[i][j]>=dp[i][k]+dp[k+1][j]){
dp[i][j]=dp[i][k]+dp[k+1][j];
if(dp[i][k]==1 && dp[k+1][j]==1 && v[i][k]==v[k+1][j]){
dp[i][j]=1;
v[i][j]=v[i][k]+1;
}
}
}
}
}
printf("%d\n",dp[1][n]);
}
int main()
{
// freopen("in.txt","r",stdin);
// ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
// int _T; read(_T); for(int _=1;_<=_T;_++)solve();
// while(read(n))solve();
solve();
return 0;
}
Codeforces1312E Array Shrinking 区间DP的更多相关文章
- hdu-5653 Bomber Man wants to bomb an Array.(区间dp)
题目链接: Bomber Man wants to bomb an Array. Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65 ...
- Educational Codeforces Round 83 E. Array Shrinking
E. Array Shrinking 题目大意: 给你一个大小是n的序列,相邻的序列如果相等,则可以合并,合并之后的值等于原来的值加1. 求:合并之后最小的序列的和. 题解: 这个数据范围和这个相邻的 ...
- Light OJ 1031---Easy Game(区间DP)
题目链接 http://lightoj.com/volume_showproblem.php?problem=1031 Description You are playing a two player ...
- UVA - 10891 Game of Sum 区间DP
题目连接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19461 Game of sum Description This ...
- HDU4570:Multi-bit Trie(区间DP)
Problem Description IP lookup is one of the key functions of routers for packets forwarding and clas ...
- HDU 4570(区间dp)
E - Multi-bit Trie Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- [CF1107E]Vasya and Binary String【区间DP】
题目描述 Vasya has a string s of length n consisting only of digits 0 and 1. Also he has an array a of l ...
- HDU 4570---Multi-bit Trie(区间DP)
题目链接 Problem Description IP lookup is one of the key functions of routers for packets forwarding and ...
- 【BZOJ-4380】Myjnie 区间DP
4380: [POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 162 Solved: ...
随机推荐
- PHP爬取网页的主要方法,你掌握了吗
这篇文章讲的是PHP爬取网页的主要方法,主要流程就是获取整个网页,然后正则匹配(关键的). PHP抓取页面的主要方法,有几种方法是网上前辈的经验,现在还没有用到的,先存下来以后试试. file()函数 ...
- 001_记一次ansible api二次开发遇到的小问题
在某次关于发布系统的项目中,需要调用ansible来发布任务,其中一段代码是初始化ansible的连接,并传入一个source(目标机器)的值,代码段如下: from .ansible_api imp ...
- docker 启动redis 报错!
首先通过命令进入: docker exec -it ‘容器名’ redis-cli 错误信息: There was an unexpected error (type=Internal Serve ...
- BN系列-未完待续
BN.LN.IN.GN Cross-Iteration Batch Normalization 因为有时候我们的计算能力有限,所以BN设置的比较小,这样BN效果就比较差. 因此我们将最近几次的batc ...
- JS学习第九天
DOM创建表格: insertRow(index) 在指定索引位置插入一行 deleteRow(index) 删除表格中index索引处的行 insertCell(index) 在index处创建一个 ...
- k8s使用需认证的私服仓库
本文内容 在K8s中使用需认证的私服仓库需要导入认证信息到集群中,常规导入方式有两种: 使用Docker已登录的仓库密文导入 使用命令行创建Secret对象导入 本文介绍的就是以上两种方法. 使用Do ...
- nginx进程模型解析
nginx进程模型解析 概念 master会发送请求给worker,用于处理用户的请求,模型图如下 nginx进程分类 master进程(只有1个) 接受信号传递给worker wo ...
- 2020-07-22:你觉得使用redis的主从复制的时候有什么点需要注意的吗?
福哥答案2020-07-22: 1.主从同步缓冲区设定大小,如果进行全量复制耗时太长,进行部分复制时发现数据已经存在丢失的情况,必须进行第二次全量复制,致使slave陷入死循环状态.在全量复制的时候, ...
- Vue 给子组件绑定v-model
父组件使用子组件时,使用v-model指令,在子组件中使用value获取props的值 父组件 <template> <div style="margin:20px;dis ...
- VulnHub靶场学习_HA: Chakravyuh
HA: Chakravyuh Vulnhub靶场 下载地址:https://www.vulnhub.com/entry/ha-chakravyuh,388/ 背景: Close your eyes a ...