三、用go语言,设在图 13-2 左边一棵树中,a、b和c 分别为子树a、β和γ中的任意结点。当结点 x 左旋之后,a、b和c 的深度会如何变化?

文心一言:

在二叉树中,左旋操作是改变节点的子节点顺序。原本的子节点β变为新的左子节点,原本的左子节点γ变为新的右子节点。

对于给定的节点a、b和c,我们首先需要明确它们在原始树中的位置关系。由于题目中没有给出具体的树结构,我假设a是b的左子节点,b是c的左子节点。

当节点x进行左旋操作后,节点的子节点关系变为:

a成为新的右子节点

b成为新的左子节点

c可能成为新的父节点(如果x原本没有父节点),或者成为b的新右子节点(如果x原本有父节点)

对于深度变化,我们可以这样考虑:

如果b原本的深度小于或等于c,那么b的深度增加1,c的深度不变。

如果b原本的深度大于c,那么b和c的深度都增加1。

请注意,上述解释基于一个假设:在原始树中,a是b的左子节点,b是c的左子节点。如果实际的关系不同,深度变化也会有所不同。因此在实际操作中,我们应当明确知道各个节点的位置关系。

讯飞星火:

当结点 x 左旋之后,a、b 和 c 的深度会发生变化。具体来说,如果 a 是 x 的父节点,那么在左旋后,a 的深度不变,而 b 和 c 的深度分别减 1。这是因为左旋操作会使 x 成为其右子树的根节点,而原来的右子树变为了 x 的左子树。

360智脑:

在图13-2左边的树中,假设a、b和c是子树a、β和γ中的任意结点。当结点x进行左旋操作后,a、b和c的深度可能会发生变化。

在左旋操作中,x的左子节点会成为新的根节点,而x会成为其右子节点。这意味着在左旋之后,a、b和c的深度可能会增加1。具体来说:

  1. 如果a、b和c在左旋之前是x的左子树中的结点,那么它们的深度在左旋之后会增加1。
  2. 如果a、b和c在左旋之前是x的右子树中的结点,那么它们的深度在左旋之后不会发生变化。

需要注意的是,这里给出的答案是基于旋转操作在平衡树(如AVL树、红黑树等)中的常见应用。在其他类型的树结构中,旋转操作可能会有不同的实现和效果。

智谱清言:

在Go语言中实现树的旋转操作,尤其是左旋,需要理解旋转的原理以及如何通过编程语言来具体实现。左旋是一种针对二叉树节点的操作,其目的是为了维持树的平衡,这是在AVL树和红黑树等自平衡二叉树中常见的操作。

左旋操作的基本步骤如下:

1.找到需要左旋的节点:这个节点通常是某个节点的右子节点,并且这个右子节点的左子节点高度较大,导致树失去平衡。

2.旋转操作:将这个需要左旋的节点(设为x)的右子节点(设为y)变为x的左子节点,同时将y的左子节点(设为z)变为x的右子节点。如果z不为空,需要将z的父节点指针指向x。

3.更新父指针:将x的父节点(设为p)的左子节点指针指向y,使y成为p的新左子节点。

在这个问题中,我们关注的是左旋操作后,节点a、b和c的深度如何变化。根据左旋操作的步骤,我们可以得出以下结论:

  • 节点a:如果a是x的左子节点,那么在左旋后,a的深度不会改变,因为它仍然是x的左子节点。如果a是y的左子节点,那么在左旋后,a的深度会增加1,因为a现在成为了x的右子节点。
  • 节点b:b的深度不会改变,因为b是y的左子节点,而在左旋操作中,y变为x的左子节点,b的位置没有变化。
  • 节点c:c的深度会增加1,因为在左旋操作中,c成为了y的右子节点,而y变为x的左子节点,c的位置相对于x提高了1层。

通过Go语言实现这一过程,我们需要定义树的节点结构,并实现左旋操作的相关方法。这里是一个简化的Go语言实现示例:

type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
Parent *TreeNode // 父节点指针
}
// 左旋操作
func (n *TreeNode) leftRotate() {
// 基本左旋操作
// ...
// 更新父指针
// ...
}
// 其他相关方法
// ...

在这个示例中,我们没有提供具体的旋转逻辑,因为这取决于树节点的具体定义和旋转操作的具体实现。实际的旋转操作需要维护正确的父子关系,并更新相关的指针,以确保树结构的正确性。在实际应用中,旋转操作通常伴随着额外的检查和调整,以确保旋转后树仍然保持平衡。

通义千问:

在图 13-2 中,如果结点 x 进行左旋操作( AVL树或红黑树等自平衡二叉搜索树中常见的调整操作),我们通常假设x是其父节点的右子节点,并且x有一个非空的左子节点y。

在这个旋转过程中:

  1. 结点 x 将成为原父节点的位置。
  2. 原 x 的左子节点 y 将成为新的 x 的右子节点。
  3. 原 x 的父节点将变成新 y 的左子节点。

对于 a、b 和 c 的深度变化:

  • 如果 a 是 y 的左子树中的节点,则 a 的深度不会改变,因为它仍然是原来的 x(现为根)的左后代。
  • 如果 b 是原来 x 的右子树中的节点,在左旋后,b 将变为 y 的右子树中的节点,因此它的深度增加 1。
  • 如果 c 是原父节点的其他子树中的节点,在左旋后,c 变为新 x(原 y)的左子树下的节点,因此其深度不变。

总结来说:

  • a 的深度:不变
  • b 的深度:增加 1
  • c 的深度:不变

请注意,以上描述基于标准的单次左旋操作以及 a、b、c 在旋转前后的相对位置关系。实际情况下需要具体分析树的具体结构和旋转细节。

天工:

在图13-2中,如果结点x进行左旋操作,那么a、b和c的深度会如何变化取决于它们在树x中的位置。

假设a、b和c在树x中的位置如下:

  • 结点a在x的左侧
  • 结点b在x的右侧且在a的左侧
  • 结点c在x的右侧且在b的左侧

那么,进行左旋操作后,a、b和c的深度会发生以下变化:

  1. 结点a的深度不变。因为左旋操作相当于把x移动到a的位置,所以a的深度仍然是它原本的深度。

  2. 结点b的深度变大了。在进行左旋操作后,b原来的右侧父节点现在变成了b的左侧子节点,所以b的深度变大了。

  3. 结点c的深度也变大了。同样的,c原来的右侧父节点现在变成了c的左侧子节点,所以c的深度也变大了。

总结一下,进行左旋操作后,a、b和c的深度都变大了。

灵小智:

在进行左旋操作后,节点x的左子节点b会取代节点x的位置,而节点x则成为节点b的右子节点。节点a和节点c的位置不变。因此,深度的变化如下:
  1. 节点a的深度不变。
  2. 节点b的深度会增加1,因为它成为了新的子树的根节点。
  3. 节点c的深度不变。

总结起来,左旋操作会导致子树a的深度不变,子树b的深度增加1,而子树c的深度保持不变。

chatgpt:

在进行左旋操作后,子树a将成为x的父节点,而子树β将成为子树a的右子树。同时,子树γ保持不变。

具体来说,结点x左旋后,a、b和c的深度会有如下变化:

  1. 结点x原来作为父节点的深度减少了一层;
  2. 子树a的深度增加了一层;
  3. 子树β的深度保持不变;
  4. 子树γ的深度保持不变。

总体上看,左旋操作会导致结点x向左移动并提升到更高的位置,同时影响了与之相关联的三个子树的深度。

kimi:

在图 13-2左边的树中,如果节点 x 执行左旋操作,那么子树 β 将提升为 x 的父节点的位置,而 x 将成为 β 的左子节点。这个操作会改变树的结构,但不会改变节点的深度。在二叉搜索树中,节点的深度是从根节点到该节点的路径上的边数。

在左旋操作中,节点 a、b 和 c 的深度不会发生变化。这是因为左旋操作仅涉及节点 x 和其父节点,以及它们的子节点。左旋操作不会改变其他节点的父节点,也不会改变树的高度或节点的相对位置。

以下是 Go 语言中左旋操作的伪代码,它展示了节点的深度不会发生变化:

// 假设我们有一个红黑树节点结构体 Node
type Node struct {
key int
color int // 0: black, 1: red
left *Node
right *Node
parent *Node // 用于旋转操作的额外指针
} // LEFT-ROTATE 函数
func leftRotate(x *Node) *Node {
// 保存 x 的右子节点
y := x.right // 将 y 的左子节点设置为 x 的右子节点
x.right = y.left // 如果 y 的左子节点不为空,更新其父指针
if y.left != nil {
y.left.parent = x
} // 更新 y 的父指针
y.parent = x.parent // 如果 x 是根节点,更新根节点
if x.parent == nil {
root = y
} else {
// 如果 x 是其父节点的左子节点
if x.parent.left == x {
x.parent.left = y
} else {
// 如果 x 是其父节点的右子节点
x.parent.right = y
}
} // 将 y 的左子节点设置为 x
y.left = x // 更新 x 的父指针
x.parent = y // 返回新的根节点
return y
}

在这个伪代码中,我们可以看到左旋操作仅涉及节点 x 和其右子节点 y,以及它们的子节点。节点 a、b 和 c 的深度不会受到影响。

混元:

在图13-2中,我们有一棵二叉搜索树,其中a、b和c分别为子树a、β和γ中的任意结点。当结点x左旋之后,a、b和c的深度会发生以下变化:

  1. 结点a的深度不变。因为结点a是子树a的根节点,左旋操作只会影响到结点x及其子树,而不会影响到子树a。

  2. 结点b的深度会增加1。因为结点x的左子节点是结点b,左旋操作会将结点x的右子节点变为结点b的左子节点,而结点b本身变为结点x的左子节点。这样,结点b的深度就会增加1。

  3. 结点c的深度会减少1。因为结点x的右子节点是结点c,左旋操作会将结点x的右子节点变为结点b的左子节点,而结点c本身变为结点b的右子节点。这样,结点c的深度就会减少1。

因此,在图13-2中,当结点x左旋之后,结点a的深度不变,结点b的深度增加1,结点c的深度减少1。

文心一言 VS 讯飞星火 VS chatgpt (170)-- 算法导论13.2 3题的更多相关文章

  1. 【对比】文心一言对飚ChatGPT实操对比体验

    前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...

  2. 【个人首测】百度文心一言 VS ChatGPT GPT-4

    昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...

  3. 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入

    "文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...

  4. 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果

    百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...

  5. 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)

    目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...

  6. 阿里版ChatGPT:通义千问pk文心一言

    随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...

  7. 基于讯飞语音API应用开发之——离线词典构建

    最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...

  8. android用讯飞实现TTS语音合成 实现中文版

    Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...

  9. android讯飞语音开发常遇到的问题

    场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...

  10. 初探机器学习之使用讯飞TTS服务实现在线语音合成

    最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...

随机推荐

  1. Visual Studio 2022 设置代码补全

    Visual Studio 2022 设置代码补全 VS默认使用 Tab 键进行代码补全. 若要使用回车补全需要重新设置,具体路径如下: ​ 工具----选项----文本编辑器----C/C++--- ...

  2. redis基本数据类型 set类型

    127.0.0.1:6379> SADD s1 a b c (integer) 3 127.0.0.1:6379> SMEMBERS s1 1) "b" 2) &quo ...

  3. frida动态插桩初探

    前言 近期碰到了分析app的需求,就学习了一下 frida的动态插桩技术.frida是一款轻量级HOOK框架,可用于多平台上,例如android.windows.ios等.frida分为两部分,服务端 ...

  4. K8S太庞大,这款PasteSpider绝对适合你!一款轻量级容器部署管理工具

    PasteSpider采用.netcore编写,运行于linux服务器的docker/podman里面,涉及的技术或者工具有podman/docker,registry,nginx,top,ssh,g ...

  5. 中山市 香山杯2023 Misc pintu

    大便题目啊,跟拼图没有半毛钱关系 附件给我们4703张图片,而且给了tip:8->10,且这些图片的宽度都是一样的. 首先我们考虑将黑色图片当作0,白色图片当作1,将这些按编号顺序将这些图片转成 ...

  6. vue + tornado 个人博客项目简介

    vue + tornado 个人博客项目简介 项目链接:https://www.freepd.top 项目链接:https://admin.freepd.top 项目简介 首页预览 本站接入了百度ap ...

  7. MySQL系列:binlog日志详解(参数、操作、GTID、优化、故障演练)

    目录 简介 作用 系统参数 --log_bin --server_id --binlog_format --sync-binlog(双一标准) --gtid-mode(gtid) --enforce- ...

  8. ChatGPT提示词迭代

    openAI CEO 除了上一篇讲的:限定,排除,示例,生成,扩展了其他方法,包括:关键词.调教和其他使用方法 关键词 像应用搜索引擎一样,在描述的句子开头给一些关键词,比如: 问题 代码 解释 分析 ...

  9. TS实现汉诺塔算法,以及图灵完备讨论

    之前在网上看到徐大佬更新的一篇文章: 用 TypeScript 类型运算实现一个中国象棋程序 在线预览地址:https://tsplay.dev/Nd4n0N 把鼠标放在最后几行的走棋结果上,惊喜的一 ...

  10. Filter入门实例

    一.介绍 Filter:Filter是Servlet的"加强版",它主要用于对用户请求进行预处理,也可对HttpServletResponse进行后处理,是个典型的"处理 ...