动态规划问题(三)最长递增子序列长度(LIS)
问题描述
有一个数组,它内部的顺序是乱序的,现在要求你找出该数组中的最长的递增子序列长度。
例如:对于数组 {10, 20, 9, 33, 21, 50, 41, 60, 80},它的最长递增子序列为{10, 22, 33, 50, 60, 80},长度为 4
解决思路
DP 方案:
令 \(L(i)\) 表示在 \(i\) 位置最长的递增子序列长度.
当
0 < j < i
并且arr[j] < arr[i]
时,\(L(i)=1 + max(L(j))\) \((j \in [0, i])\)当
i == 0
时, \(L(i) = 1\)因此,状态转移方程为
\[L(i)=\begin{cases}
1 + max(L(j)) & j \in [0, i] \\
1 & i = 0 \\
\end{cases}
\]
贪心策略和二分搜索:
- 定义一个数组,这个数组的元素是单调递增的。
- 贪心策略:每次遇到一个元素将它插入到预先定义的数组中,使得整个数组的增长是最 “缓慢”的。
- 由于插入后数组的元素元素是有序的,因此下次插入时可以使用二分查找进行替换。
实现
DP 方案的实现
public class Solution {
public static int lis(int[] array) {
int len = array.length;
if (1 == len) return 1; // 边界条件 int ans = 1; // 对任意的数组序列,最少的递增子序列长度至少为 1
int[] dp = new int[len];
dp[0] = 1;
for (int i = 1; i < len; ++i) {
dp[i] = 1;
// 从小于 i 的数组索引中找到最大的递增序列长度
for (int j = 0; j < i; ++j) {
if (array[i] > array[j])
dp[i] = Math.max(dp[i], dp[j] + 1);
} // 与当前的最大递增序列长度进行比较,得到最终的最长递增子序列长度
ans = Math.max(dp[i], ans);
} return ans;
}
}
贪心策略 + 二分搜索的实现
class Solution {
public int lis(int[] array) {
int len = array.length;
if (1 == len) return 1; // 边界条件检测 int ans = 1;
int[] dp = new int[len];
dp[0] = array[0]; // 存储有序插入结果
for (int i = 1; i < len; ++i) {
// 如果当前元素大于定义数组的最大元素,则直接添加它到末尾
if (array[i] > dp[ans - 1]) {
dp[ans++] = array[i];
} else {
// 查找当前元素的插入位置
int lo = 0, hi = ans - 1, pos = 0;
while (lo <= hi) {
int mid = lo + (hi - lo) / 2;
if (dp[mid] == array[i]) {
pos = mid;
break;
} else if (dp[mid] > array[i]) {
hi = mid - 1;
} else {
lo = mid + 1;
pos = lo;
}
} dp[pos] = array[i];
}
} return ans;
}
}
动态规划问题(三)最长递增子序列长度(LIS)的更多相关文章
- POJ 2533 - Longest Ordered Subsequence - [最长递增子序列长度][LIS问题]
题目链接:http://poj.org/problem?id=2533 Time Limit: 2000MS Memory Limit: 65536K Description A numeric se ...
- 动态规划----最长递增子序列问题(LIS)
题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动 ...
- 求解最长递增子序列(LIS) | 动态规划(DP)+ 二分法
1.题目描述 给定数组arr,返回arr的最长递增子序列. 2.举例 arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答 ...
- 最长递增子序列(LIS)(转)
最长递增子序列(LIS) 本博文转自作者:Yx.Ac 文章来源:勇幸|Thinking (http://www.ahathinking.com) --- 最长递增子序列又叫做最长上升子序列 ...
- 最长递增子序列(LIS)
最长递增子序列(Longest Increasing Subsequence) ,我们简记为 LIS. 题:求一个一维数组arr[i]中的最长递增子序列的长度,如在序列1,-1,2,-3,4,-5,6 ...
- 最长递增子序列问题—LIS
问题:给定一组数 a0,a0,....,an-1. 求该序列的最长递增(递减)序列的长度. 最长递增子序列长度的求法有O(n^2)和O(nlogn)两种算法. 1.复杂度为O(n^2)的算法. 设L[ ...
- 最长公共子序列(LCS)、最长递增子序列(LIS)、最长递增公共子序列(LICS)
最长公共子序列(LCS) [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...
- [51Nod 1218] 最长递增子序列 V2 (LIS)
传送门 Description 数组A包含N个整数.设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可 ...
- 动态规划(DP),最长递增子序列(LIS)
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...
- 动态规划之最长递增子序列(LIS)
在一个已知的序列{ a1,a2,……am}中,取出若干数组成新的序列{ ai1, ai2,…… aim},其中下标 i1,i2, ……im保持递增,即新数列中的各个数之间依旧保持原数列中 ...
随机推荐
- 文心一言 VS 讯飞星火 VS chatgpt (100)-- 算法导论9.3 6题
六.用go语言,对一个包含n个元素的集合来说,k分位数是指能把有序集合分成k个等大小集合的第k-1个顺序统计量.给出一个能找出某一集合的k分位数的 O(nlgk)时间的算法. 文心一言: 要找到一个集 ...
- Springboot简单功能示例-6 使用加密数据源并配置日志
springboot-sample 介绍 springboot简单示例 跳转到发行版 查看发行版说明 软件架构(当前发行版使用) springboot hutool-all 非常好的常用java工具库 ...
- C++中::和:, .和->的作用和区别
符号::和:的作用和区别 ::是作用域运算符,A::B表示作用域A中的-名称B,A可以是名字空间.类.结构: 类作用域操作符 "::"指明了成员函数所属的类.如:M::f(s)就表 ...
- 校招零Offer要不要先找实习?
国庆前后被问到最多的问题是:"磊哥,我现在还是 0 Offer,要不要先去找个实习?",给大家看看部分截图. 同学 A: 同学 B: 同学 C: 其他还有一些截图,我这里就不一一贴 ...
- 再学Blazor——组件
Blazor 应用基于组件,组件可以复用和嵌套.本文内容如下: 组件类 组件嵌套 组件参数 组件对象 1. 组件类 所有组件都是继承 ComponentBase 组件基类,razor 文件默认继承 C ...
- 高性能日志脱敏组件:已支持 log4j2 和 logback 插件
项目介绍 日志脱敏是常见的安全需求.普通的基于工具类方法的方式,对代码的入侵性太强,编写起来又特别麻烦. sensitive提供基于注解的方式,并且内置了常见的脱敏方式,便于开发. 同时支持 logb ...
- 【Unity3D】UI Toolkit样式选择器
1 前言 UI Toolkit简介 中介绍了样式属性,UI Toolkit容器 和 UI Toolkit元素 中介绍了容器和元素,本文将介绍样式选择器(Selector),主要包含样式类选择器(C ...
- Kubernetes跨StorageClass迁移,切换Rainbond默认SC
基于主机安装或基于Kubernetes安装的 Rainbond 集群(均使用默认参数安装),默认使用的共享文件存储是 NFS ,以 Pod 方式运行在 Kubernetes 中,但这种方式也有一些无法 ...
- YbtOJ 「动态规划」第5章 状压DP
犹豫了许久还是决定试试始终学不会的状压 dp.(上一次学这东西可能还是两年前的网课,显然当时在摸鱼一句都没听/kk 果然还是太菜. 例题1.种植方案 设 \(f_{i,j}\) 表示第 \(i\) 行 ...
- np.array和np.ndarry 的区别
np.array和np.ndarray都是NumPy中用于创建多维数组的函数. np.ndarray是NumPy中的多维数组类,它是一种可变的数组,可以通过修改数组中的元素来改变其内容.使用np.nd ...