为了AIGC的学习,我做了一个基于Transformer Models模型完成GPT2的学生AIGC学习训练模型,指在训练模型中学习编程AI。

在编程之前需要准备一些文件:

首先,先win+R打开运行框,输入:PowerShell后

输入:

pip install -U huggingface_hub

下载完成后,指定我们的环境变量:

$env:HF_ENDPOINT = "https://hf-mirror.com"

然后下载模型:

huggingface-cli download --resume-download gpt2 --local-dir "D:\Pythonxiangmu\PythonandAI\Transformer Models\gpt-2"

这边我的目录是我要下载的工程目录地址

然后下载数据量:

huggingface-cli download --repo-type dataset --resume-download wikitext --local-dir "D:\Pythonxiangmu\PythonandAI\Transformer Models\gpt-2"

这边我的目录是我要下载的工程目录地址

所以两个地址记得更改成自己的工程目录下(建议放在创建一个名为gpt-2的文件夹)

在PowerShell中下载完这些后,可以开始我们的代码啦

import torch
from torch.utils.data import Dataset, DataLoader
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
AdamW,
get_linear_schedule_with_warmup,
set_seed,
)
from torch.optim import AdamW # 设置随机种子以确保结果可复现
set_seed(42) class TextDataset(Dataset):
def __init__(self, tokenizer, texts, block_size=128):
self.tokenizer = tokenizer
self.examples = [
self.tokenizer(text, return_tensors="pt", padding='max_length', truncation=True, max_length=block_size) for
text
in texts]
# 在tokenizer初始化后,确保unk_token已设置
print(f"Tokenizer's unk_token: {self.tokenizer.unk_token}, unk_token_id: {self.tokenizer.unk_token_id}") def __len__(self):
return len(self.examples) def __getitem__(self, i):
item = self.examples[i]
# 替换所有不在vocab中的token为unk_token_id
for key in item.keys():
item[key] = torch.where(item[key] >= self.tokenizer.vocab_size, self.tokenizer.unk_token_id, item[key])
return item def train(model, dataloader, optimizer, scheduler, de, tokenizer):
model.train()
for batch in dataloader:
input_ids = batch['input_ids'].to(de)
# 添加日志输出检查input_ids
if torch.any(input_ids >= model.config.vocab_size):
print("Warning: Some input IDs are outside the model's vocabulary.")
print(f"Max input ID: {input_ids.max()}, Vocabulary Size: {model.config.vocab_size}") attention_mask = batch['attention_mask'].to(de)
labels = input_ids.clone()
labels[labels[:, :] == tokenizer.pad_token_id] = -100 outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward() optimizer.step()
scheduler.step()
optimizer.zero_grad() def main():
local_model_path = "D:/Pythonxiangmu/PythonandAI/Transformer Models/gpt-2"
tokenizer = AutoTokenizer.from_pretrained(local_model_path) # 确保pad_token已经存在于tokenizer中,对于GPT-2,它通常自带pad_token
if tokenizer.pad_token is None:
special_tokens_dict = {'pad_token': '[PAD]'}
tokenizer.add_special_tokens(special_tokens_dict)
model = AutoModelForCausalLM.from_pretrained(local_model_path, pad_token_id=tokenizer.pad_token_id)
else:
model = AutoModelForCausalLM.from_pretrained(local_model_path) model.to(device) train_texts = [
"The quick brown fox jumps over the lazy dog.",
"In the midst of chaos, there is also opportunity.",
"To be or not to be, that is the question.",
"Artificial intelligence will reshape our future.",
"Every day is a new opportunity to learn something.",
"Python programming enhances problem-solving skills.",
"The night sky sparkles with countless stars.",
"Music is the universal language of mankind.",
"Exploring the depths of the ocean reveals hidden wonders.",
"A healthy mind resides in a healthy body.",
"Sustainability is key for our planet's survival.",
"Laughter is the shortest distance between two people.",
"Virtual reality opens doors to immersive experiences.",
"The early morning sun brings hope and vitality.",
"Books are portals to different worlds and minds.",
"Innovation distinguishes between a leader and a follower.",
"Nature's beauty can be found in the simplest things.",
"Continuous learning fuels personal growth.",
"The internet connects the world like never before."
# 更多训练文本...
] dataset = TextDataset(tokenizer, train_texts, block_size=128)
dataloader = DataLoader(dataset, batch_size=4, shuffle=True) optimizer = AdamW(model.parameters(), lr=5e-5)
total_steps = len(dataloader) * 5 # 假设训练5个epoch
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps) for epoch in range(5): # 训练5个epoch
train(model, dataloader, optimizer, scheduler, device, tokenizer) # 使用正确的变量名dataloader并传递tokenizer # 保存微调后的模型
model.save_pretrained("path/to/save/fine-tuned_model")
tokenizer.save_pretrained("path/to/save/fine-tuned_tokenizer") if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
main()

这个代码只训练了5个epoch,有一些实例文本,记得调成直接的路径后,运行即可啦。

如果有什么问题可以随时在评论区或者是发个人邮箱:linyuanda@linyuanda.com

[Python急救站]基于Transformer Models模型完成GPT2的学生AIGC学习训练模型的更多相关文章

  1. 基于 Agent 的模型入门:Python 实现隔离仿真

    2005 年诺贝尔经济学奖得主托马斯·谢林(Thomas Schelling)在上世纪 70 年代就纽约的人种居住分布得出了著名的 Schelling segregation model,这是一个 A ...

  2. python学习-- Django根据现有数据库,自动生成models模型文件

    Django引入外部数据库还是比较方便的,步骤如下 : 创建一个项目,修改seting文件,在setting里面设置你要连接的数据库类型和连接名称,地址之类,和创建新项目的时候一致 运行下面代码可以自 ...

  3. 基于Python的信用评分卡模型分析(二)

    上一篇文章基于Python的信用评分卡模型分析(一)已经介绍了信用评分卡模型的数据预处理.探索性数据分析.变量分箱和变量选择等.接下来我们将继续讨论信用评分卡的模型实现和分析,信用评分的方法和自动评分 ...

  4. 【tornado】系列项目(二)基于领域驱动模型的区域后台管理+前端easyui实现

    本项目是一个系列项目,最终的目的是开发出一个类似京东商城的网站.本文主要介绍后台管理中的区域管理,以及前端基于easyui插件的使用.本次增删改查因数据量少,因此采用模态对话框方式进行,关于数据量大采 ...

  5. 【tornado】系列项目(一)之基于领域驱动模型架构设计的京东用户管理后台

    本博文将一步步揭秘京东等大型网站的领域驱动模型,致力于让读者完全掌握这种网络架构中的“高富帅”. 一.预备知识: 1.接口: python中并没有类似java等其它语言中的接口类型,但是python中 ...

  6. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  7. 02基于python玩转人工智能最火框架之TensorFlow人工智能&深度学习介绍

    人工智能之父麦卡锡给出的定义 构建智能机器,特别是智能计算机程序的科学和工程. 人工智能是一种让计算机程序能够"智能地"思考的方式 思考的模式类似于人类. 什么是智能? 智能的英语 ...

  8. 转 Django根据现有数据库,自动生成models模型文件

    Django引入外部数据库还是比较方便的,步骤如下 : 创建一个项目,修改seting文件,在setting里面设置你要连接的数据库类型和连接名称,地址之类,和创建新项目的时候一致 运行下面代码可以自 ...

  9. Django models模型

    Django models模型 一. 所谓Django models模型,是指的对数据库的抽象模型,models在英文中的意思是模型,模板的意思,在这里的意思是通过models,将数据库的借口抽象成p ...

  10. 基于Distiller的模型压缩工具简介

    Reference: https://github.com/NervanaSystems/distiller https://nervanasystems.github.io/distiller/in ...

随机推荐

  1. html 本地预览图片 图片上绘制矩形框

    效果如图 完整html代码如下 <!DOCTYPE html> <html> <head> <meta charset="UTF-8" / ...

  2. Oracle存储过程模板

    PROCEDURE proc_test(p_id IN NUMBER, v_cur OUT SYS_REFCURSOR, p_result_code OUT NUMBER, p_result_mess ...

  3. css实现多余文字隐藏,用省略号代替

    .txt{ overflow: hidden; //溢出内容隐藏 white-space: nowrap; //强制文本在一行内显示 text-overflow: ellipsis; //当对象内文本 ...

  4. KingbaseES 支持自定义异常

    KingbaseES PLSQL 从 V8R6C4 版本开始,支持用户自定义异常.具体例子如下: create or replace procedure p_test() as error_numbe ...

  5. C++代码实现OnComponentHit事件粒子消失蓝图--斯坦福

    蓝图节点 OnComponentBeginOverlap,OnComponentHit等等之类如何迁移到C++中 方法 这些蓝图节点实际上就是一个UE4已经定义好的事件,在蓝图中使用模块的连接来实现事 ...

  6. IDEA彩虹括号插件Rainbow Brackets

    IDEA搜索插件Rainbow Brackets 安装后重启IDEA 效果如图:不同层级的括号会变成不同的颜色,便于区分. 光标定位到前一个括号后,使用快捷键ALT+鼠标右键可以只查看当前括号中的内容 ...

  7. 汇编语言-int指令

    int 指令 int 指令的格式为:int n,n为中断类型码,它的功能是引发终端过程. CPU执行int n指令,相当于引发一个n号中断的中断过程,执行过程如下. 取中断类型码n: 标志寄存器入栈, ...

  8. 现代DevOps如何改变软件开发格局

    在软件开发的早期,该过程通常是开发人员编写代码,再将其交给质量保证(QA)进行测试.这种瀑布开发方法可能会导致质量问题和延迟,因为问题是在周期后期发现的. 一.了解DevOps和测试左移 DevOps ...

  9. 数据解析之re正则表达式

    数据解析之re正则表达式 1. 正则基础 1.1 为什么使用正则 需求 判断一个字符串是否是手机号 解决 编写一个函数,给函数一个字符串,如果是手机号则返回True,否则返回False 代码 def ...

  10. JDK12的新特性:teeing collectors

    目录 简介 talk is cheap, show me the code Teeing方法深度剖析 Characteristics 总结 简介 JDK12为java.util.stream.Coll ...