在FPGA中何时用组合逻辑或时序逻辑
在设计FPGA时,大多数采用Verilog HDL或者VHDL语言进行设计(本文重点以verilog来做介绍)。设计的电路都是利用FPGA内部的LUT和触发器等效出来的电路。
数字逻辑电路分为组合逻辑电路和时序逻辑电路。时序逻辑电路是由组合逻辑电路和时序逻辑器件构成(触发器),即数字逻辑电路是由组合逻辑和时序逻辑器件构成。所以FPGA的最小单元往往是由LUT(等效为组合逻辑)和触发器构成。
在进行FPGA设计时,应该采用组合逻辑设计还是时序逻辑?这个问题是很多初学者不可避免的一个问题。
设计两个无符号的8bit数据相加的电路。
组合逻辑设计代码:
module adder_8bit ( input wire [7:0] dataa, input wire [7:0] datab, output wire [8:0] datas ); assign datas = dataa + datab; endmodule |
对应的电路为:
时序逻辑对应代码为:
module adder_8bit ( input wire clk, input wire rst_n, input wire [7:0] dataa, input wire [7:0] datab, output reg [8:0] datas ); always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) datas <= 9'd0; else datas <= dataa + datab; end endmodule |
对应的电路为:
可以思考一下,这个两种设计方法都没有任何错误。那么在设计时应该用哪一种呢?
在设计时,有没有什么规定必须要用组合逻辑或者时序逻辑?例如:在verilog中,在always中被赋值了就必须是reg类型,assign赋值了就必须是wire类型。很遗憾的是,目前没有任何的规定。
下面几点笔者平时自己做设计的经验,在这里分享一下:
一、 带有反馈的必须用时序逻辑
何为带有有反馈?即输出结果拉回到输入。
自加一计数器。
代码为:
// assign cnt = cnt + 1'b1; always @ (*) begin cnt = cnt + 1'b1; end |
对应的电路为
这种电路在工作时,就会出现无限反馈,不受任何控制,一般情况下,我们认为结果没有任何意义。
和上面的情况类似的还有取反。
assign flag = ~flag; |
类似情况还有很多就不在一一列举。
上述说的情况都是直接带有反馈,下面说明间接反馈。
代码为:
assign k = cnt * 2; always @ (*) begin cnt = k + 1'b1; end |
从代码上来看,没有什么明确反馈,下面看实际对应的电路
从实际的电路上来看,一旦运行起来,还是会出现无限反馈,不受任何控制。
还有一种情况是带有控制的反馈。
设计代码为:
always @ (flag) begin if (flag == 1'b1) cnt = cnt + 1'b1; else cnt = cnt; end |
这个电路可以等效为
在flag等于1期间,此电路依然会无限制的反馈,无法确定在此期间进行了多少次反馈。
从代码的角度理解是flag变化一次,加一次。可是对应于电路后,和预想的是不相同的。
说了这么多的这么多不对的情况,下面考虑正确的情况
设计代码为:
always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) cnt <= 4'd0; else cnt <= cnt + 1'b1; end |
在上述的电路中,clk每来一个上升沿,cnt的数值增加一。可以用作计时使用。
利用寄存器将反馈路径切换即可。此时的反馈是可控制,并且此时的结果就有了意义。
其他的反馈中,加入寄存器即可。而加入寄存器后,就变为时序逻辑。
二、 根据时序对齐关系进行选择
在很多的设计时,没有反馈,那么应该如何选择呢?
举例说明:输入一个八位的数据(idata),然后将此八位数据进行平方后,扩大2倍,作为输出。要求输出结果(result)时,将原数据同步输出(odata),即数据和结果在时序上是对齐的。
设计代码为:
assign odata = idata; assign result = 2 * (idata * idata); |
这种设计方法是可以的,因为都采用组合逻辑设计,odata和result都是和idata同步的,只有逻辑上的延迟,没有任何时钟的延迟。
另外一种设计代码为:
assign odata = idata; always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) odata <= 17'd0; else result <= 2 * (idata * idata); end |
这种设计方法为错误,odata的输出是和idata同步的,而result的输出将会比idata晚一拍,最终导致result要比odata晚一拍,此时结果为不同步,设计错误。
修改方案为:将result的寄存器去掉,修改为组合逻辑,那就是第一种设计方案。第二种为将odata也进行时序逻辑输出,那么此时odata也将会比idata延迟一拍,最终结果为result和odata同步输出。
三、 根据运行速度进行选择
在数字逻辑电路中,中间某一部分为组合逻辑,两侧的输入或者输出也会对延迟或者输入的数据速率有一定的要求
组合逻辑1越复杂延迟越大,而导致的结果就是clk的时钟速率只能降低,进而导致设计结果失败。
当组合逻辑1无法进行优化时,还想要达到自己想要的速度时,我们可以进行逻辑拆分,增加数据的输出潜伏期,增加数据的运行速度。
将组合逻辑1的功能拆分为组合逻辑A和组合逻辑B,此时,输入的数据得到结果虽然会多延迟一拍,但是数据的流速会变快。
那么这个和选用组合逻辑和时序逻辑有什么关系呢?
举例说明:目前要设计模块A,不涉及反馈,不涉及时序对齐等,可以采取组合逻辑设计也可以采用时序逻辑设计。
模块A的输出连接到模块B,经过一些变换(组合逻辑N)连接到某个寄存器K上。如果模块A采用组合逻辑,那么模块A的组合逻辑和模块B到达寄存器K之前的组合逻辑N会合并到一起。那么此时组合逻辑的延迟就会变得很大,导致整体设计的时钟速率上不去。
当运行速率比较快时,建议对于复杂的组合逻辑进行拆分,有利于时序分析的通过。
在上述的三个规则中,第一个和第二个用的是最多的,第三个在设计时,有时不一定能够注意到,当出现时序违例时,知道拆分能够解决问题就可以。
设计者:郝旭帅 QQ:746833924 QQ交流群: 173560979
在FPGA中何时用组合逻辑或时序逻辑的更多相关文章
- 我的 FPGA 学习历程(09)—— 时序逻辑入门
讲到这篇时,组合逻辑就告一段落了,下面是一些总结: 描述组合逻辑时,always 语句中的敏感信号列表中需要列出全部的可能影响输出的变量 描述组合逻辑时,always 语句中的赋值总是使用阻塞赋值符号 ...
- FPGA学习笔记(六)—— 时序逻辑电路设计
用always@(posedge clk)描述 时序逻辑电路的基础——计数器(在每个时钟的上升沿递增1) 例1.四位计数器(同步使能.异步复位) // Module Name: coun ...
- 【转】关于FPGA中建立时间和保持时间的探讨
时钟是整个电路最重要.最特殊的信号,系统内大部分器件的动作都是在时钟的跳变沿上进行, 这就要求时钟信号时延差要非常小, 否则就可能造成时序逻辑状态出错:因而明确FPGA设计中决定系统时钟的因素,尽 ...
- sv时序组合和时序逻辑
input a; input b; input c; reg d; wire e; reg f; // 时序逻辑,有寄存器 always@(posedge clk)begin 'b1)begin d ...
- FPGA中改善时序性能的方法_advanced FPGA design
本文内容摘自<advanced FPGA design>对应中文版是 <高级FPGA设计,结构,实现,和优化>第一章中的内容 FPGA中改善时序,我相信也是大家最关心的话题之一 ...
- FPGA时序逻辑中常见的几类延时与时间(五)
FPGA逻辑代码重要的是理解其中的时序逻辑,延时与各种时间的记忆也是一件头疼的事,这里把我最近看到的比较简单的几类总结起来,共同学习. 一.平均传输延时 平均传输延时 二.开启时间与关闭时间 开 ...
- FPGA中的delay与latency
delay和latency都有延迟的意义,在FPGA中二者又有具体的区别. latency出现在时序逻辑电路中,表示数据从输入到输出有效经过的时间,通常以时钟周期为单位. delay出现在组合逻辑电路 ...
- FPGA中的时序分析(四)
常用约束语句说明 关于Fmax 上述是实现Fmax的计算公式,clock skew delay的计算如下图, 就是两个时钟的差值.到头来,影响Fmax的值的大小就是组合逻辑,而Fmax是针对 ...
- 【转载】FPGA 中的latch 锁存器
以下这篇文章讲述了锁存器的一些概念和注意事项.原文标题及链接: FPGA 中的latch 锁存器 - 快乐至永远上的博客 - 与非博客 - 与网 http://www.eefocus.com/liuy ...
- FPGA中的时序分析(一)
谈及此部分,多多少少有一定的难度,笔者写下这篇文章,差不多是在学习FPGA一年之后的成果,尽管当时也是看过类似的文章,但是都没有引起笔者注意,笔者现在再对此知识进行梳理,也发现了有很多不少的收获.笔者 ...
随机推荐
- Flume入门操作
十一.Flume 1)开启Flume的监控端口 bin/flume-ng agent -c conf/ -n a1 -f job/flume-netcat-logger.conf -Dflume.ro ...
- #K-D Tree#BZOJ 4303 数列
题目传送门 分析 将 \((i,p_i)\) 视为一个点,那么相当于对横坐标或纵坐标对应的点区间乘.区间加或者区间求和, 把这些点丢到 K-D Tree 上,维护最小/大横/纵坐标,如果当前区间点在范 ...
- #LCA,二分,树上差分#洛谷 2680 运输计划
题目 一棵树,每条边上都有边权,现在选择一条边将边权变为0,使\(m\)条路径边权和其中一条的最大值最小,问这个值 分析 由于大于最终结果的一定可行,小于最终结果的一定不可行,所以二分答案,首先答案以 ...
- 中文GPTS详尽教程,字节扣子Coze插件使用全输出
今天,斜杠君和大家分享如何在字节扣子Coze中创建插件,并在创建后如何使用这个插件. 一.新建插件 首先,进入到插件页面,创建一个插件. https://www.coze.cn/home 点击左侧的个 ...
- OpenHarmony父子组件单项同步使用:@Prop装饰器
@Prop装饰的变量可以和父组件建立单向的同步关系.@Prop装饰的变量是可变的,但是变化不会同步回其父组件. 说明: 从API version 9开始,该装饰器支持在ArkTS卡片中使用. 概述 ...
- 李俊刚:我是如何在OpenHarmony完成ap6275s WiFi驱动的HDF适配工作的?
编者按:在 OpenHarmony 生态发展过程中,涌现了大批优秀的代码贡献者,本专题旨在表彰贡献.分享经验,文中内容来自嘉宾访谈,不代表 OpenHarmony 工作委员会观点. 李俊刚 深圳开鸿数 ...
- 【直播回顾】OpenHarmony知识赋能五期第四课——子系统音频解读
5月12日晚上19点,知识赋能第五期第四节课<OpenHarmony标准系统多媒体子系统之音频解读>,在OpenHarmony开发者成长计划社群内成功举行. 本期课程,由深开鸿资深技术专家 ...
- Python 简介和用途
什么是Python? Python是一种流行的编程语言,由Guido van Rossum创建,并于1991年发布. 它用于以下领域: 网页开发(服务器端) 软件开发 数学 系统脚本编写 Python ...
- 鼠标移动出现雪花-js实现
// 鼠标移动出现雪花.html <!DOCTYPE html> <html> <head> <title></title> <scr ...
- idea无法解析目录@/xxx
显示错误如下 解决办法 vite.config.js 中添加配置,配置'@'的别名 import { fileURLToPath, URL } from 'node:url' // https://v ...