#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=;
const double PI=acos(-);
struct node{
double real,imag;
void clear(){real=imag=;}
node operator +(const node &x){return (node){real+x.real,imag+x.imag};}
node operator -(const node &x){return (node){real-x.real,imag-x.imag};}
node operator *(const node &x){return (node){real*x.real-imag*x.imag,real*x.imag+imag*x.real};}
}q[maxn],p[maxn],A[maxn],t1,t2,w,wn;
int m,n,len,rev[maxn];
int Rev(int x){
int temp=;
for (int i=;i<=len;i++){temp<<=,temp+=(x&),x>>=;}
return temp;
}
void FFT(node *a,int op){
for (int i=;i<n;i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int s=;s<=n;s<<=){
wn=(node){cos(2.0*op*PI/s),sin(2.0*op*PI/s)};
for (int i=;i<n;i+=s){
w=(node){,};
for (int j=i;j<i+s/;j++,w=w*wn){
t1=a[j],t2=w*a[j+s/];
a[j]=t1+t2,a[j+s/]=t1-t2;
}
}
}
}
int main(){
scanf("%d",&m); n=,len=;
while (n<(m<<)) n<<=,len++;
for (int i=;i<n;i++) rev[i]=Rev(i);
for (int i=;i<n;i++) p[i].clear(),q[i].clear();
for (int i=;i<=m;i++) scanf("%lf",&q[i].real);
for (int i=;i<m;i++) p[i].real=-1.0/(i-m)/(i-m);
p[m].real=; for (int i=m+;i<n;i++) p[i].real=1.0/(i-m)/(i-m);
FFT(q,),FFT(p,);
for (int i=;i<n;i++) A[i]=q[i]*p[i];
FFT(A,-);
for (int i=;i<n;i++) A[i].real=1.0*A[i].real/n;
for (int i=;i<=m;i++) printf("%.3lf\n",A[m+i].real);
return ;
}

题目大意;题意上网找吧。

做法:我们令A[i+n]=E[n],然后修改一个数组的定义,就是裸的卷积了,直接FFT,详见16年国家集训队论文。

bzoj3527: [Zjoi2014]力的更多相关文章

  1. bzoj3527: [Zjoi2014]力 fft

    bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  2. [bzoj3527][Zjoi2014]力_FFT

    力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...

  3. BZOJ3527[Zjoi2014]力——FFT

    题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...

  4. bzoj3527: [Zjoi2014]力 卷积+FFT

    先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...

  5. 2019.02.28 bzoj3527: [Zjoi2014]力(fft)

    传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai​,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...

  6. BZOJ3527 [Zjoi2014]力 【fft】

    题目 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入格式 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式 n行,第i行输出Ei.与标准答案误差不超过 ...

  7. bzoj千题计划167:bzoj3527: [Zjoi2014]力

    http://www.lydsy.com/JudgeOnline/problem.php?id=3527 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei.      以n=4为例: ...

  8. [BZOJ3527][ZJOI2014]力 FFT+数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...

  9. [BZOJ3527][ZJOI2014]力:FFT

    分析 整理得下式: \[E_i=\sum_{j<i}{\frac{q_i}{(i-j)^2}}-\sum_{j>i}{\frac{q_i}{(i-j)^2}}\] 假设\(n=5\),考虑 ...

随机推荐

  1. mysql安装及配置服务

    第一次安装mysql 1.本地环境:windows 7 -64,mysql版本5.5.28(mysql-5.5.28-winx64.msi) 2.双击mysql-5.5.28-winx64.msi,进 ...

  2. Linux rm删除大批量文件

    在使用rm删除大批量文件时,有可能会遭遇"参数列太长"(Argument list too long)的问题.如下所示 [oracle@DB-Server bdump]$ rm - ...

  3. SQLSERVER自动定时(手动)备份工具

    最近项目需要,写了一个小工具软件: 1.实时显示监控 2.可多选择备份数据库 3.按每天定时备份 4.备份文件自动压缩 5.删除之前备份文件 直接上图 1.备份监控界面: 2.数据库设置: 附工具下载 ...

  4. Mysql小技巧总汇

    1.datetime类型字段格式化 SELECT DATE_FORMAT(date,'%Y-%m-%d %h:%m:%s') date FROM message; 结果: +------------- ...

  5. web服务器选择Apache还是Nginx

    首先我们来谈谈老朋友Apache,Apache HTTP Server(简称Apache)是世界使用排名第一的Web服务器软件,音译为阿帕奇,是Apache软件基金会的一个开放源码Web服务器,可以运 ...

  6. nodejs处理图片、CSS、JS链接

    接触Nodejs不深,看到页面上每一个链接都要写一个handler,像在页面显示图片,或者调用外部CSS.JS文件,每个链接都要写一个handler,觉得太麻烦,是否可以写个程序出来,能够自动识别图片 ...

  7. 附加数据库后无法创建发布,error 2812 解决

    日前,由于业务需要,我要把一个数据库直接迁移到新的实例上 用的方法比较古老,就是直接停旧服务器,将数据文件复制到新服务器上,附加数据库 当然这个附加没有什么可说的了,但是在附加后需要将原来库上的发布重 ...

  8. XLT格式化XML那点事(C#代码中的问题解决)(二)

    接上篇<XML通过XSL格式化的那点事(XML到自定义节点折叠显示)>,本文就如何将大的XLST分割成小文件和如何用C#将XML通过XSL生成HTML文件中的问题做下分析,避免有同样需求的 ...

  9. VS2013问题与解决方法

    问题: Getting Error "'Microsoft.VisualStudio.Editor.Implementation.EditorPackage' package did not ...

  10. java Socket编程-基于UDP

    package com.wzy.UDPTest; import java.net.DatagramPacket; import java.net.DatagramSocket; import java ...