two measures precision and recall of classification
In pattern recognition and information retrievial with binary classification , there are some measures ,such as recall , precision。
In classification task, the precision for a class is the number of true positive divided by the total number of elements labeled as belonging to the positive class(i.e. the sum of true positives and false positives ,which are items incorrectly labeled as belonging to the class.) And the recall, in this context, is defined as the number of true positives divided by the total numble of elements that actually belonging to the positive class(i.e. the sum of true positive and false negative .
Definition(In classification context)
for classification tasks, the terms true positve ,false positive ,true negative , false negative ,compare the results of the classifier under test with trusted external judgment.
The terms positive and negative refer to the classifier's prediction(sometimes known as the expection),and the terms true and false refer to whether that prediction corresponds to the external jugement(sometimes known as te observation)。
Let us define an experiment from P positive instances and N negative instances for some condition. The four outcomes can be formulated in a 2×2 contingency table or confusion matrix, as follows:
Precision and recall are then defined as:
precision = tp/(tp+fp)
recall = tp/(tp+fn)
Recall in this context is alse referred to as the true positive rate or sensitivity, and precision is alse referred to positive predictive vaule(PPV), some other related measures used in classification include true negative rate and accuracy. True negatvie rate is alse called specificty.
reference:
1、wikipedia : Precision and recall
2、Fawcett, Tom (2006). "An Introduction to ROC Analysis". Pattern Recognition Letters. 27 (8): 861 – 874. doi:10.1016/j.patrec.2005.10.010.
two measures precision and recall of classification的更多相关文章
- Alink漫谈(八) : 二分类评估 AUC、K-S、PRC、Precision、Recall、LiftChart 如何实现
Alink漫谈(八) : 二分类评估 AUC.K-S.PRC.Precision.Recall.LiftChart 如何实现 目录 Alink漫谈(八) : 二分类评估 AUC.K-S.PRC.Pre ...
- ROC曲线、AUC、Precision、Recall、F-measure理解及Python实现
本文首先从整体上介绍ROC曲线.AUC.Precision.Recall以及F-measure,然后介绍上述这些评价指标的有趣特性,最后给出ROC曲线的一个Python实现示例. 一.ROC曲线.AU ...
- 准确率和召回率(precision&recall)
在机器学习.推荐系统.信息检索.自然语言处理.多媒体视觉等领域,常常会用到准确率(precision).召回率(recall).F-measure.F1-score 来评价算法的准确性. 一.准确率和 ...
- 一道关于 precision、recall 和 threshold关系的机器学习题
Suppose you have trained a logistic regression classifier which is outputing hθ(x). Currently, you p ...
- precision、recall、accuracy的概念
机器学习中涉及到几个关于错误的概念: precision:(精确度) precision = TP/(TP+FP) recall:(召回率) recall = TP/(TP+FN) accuracy: ...
- 利用sklearn对MNIST手写数据集开始一个简单的二分类判别器项目(在这个过程中学习关于模型性能的评价指标,如accuracy,precision,recall,混淆矩阵)
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- 分类问题的几个评价指标(Precision、Recall、F1-Score、Micro-F1、Macro-F1
轉自 https://blog.csdn.net/sinat_28576553/article/details/80258619 四个基本概念TP.True Positive 真阳性:预测为正,实 ...
- ROC,AUC,Precision,Recall,F1的介绍与计算(转)
1. 基本概念 1.1 ROC与AUC ROC曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,ROC曲线称为受试者工作特征曲线 (receiver operatin ...
- ROC,AUC,Precision,Recall,F1的介绍与计算
1. 基本概念 1.1 ROC与AUC ROC曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,ROC曲线称为受试者工作特征曲线 (receiver operatin ...
随机推荐
- Netty快速入门(03)Java NIO 介绍-Buffer
NIO 介绍 NIO,可以说是New IO,也可以说是non-blocking IO,具体怎么解释都可以. NIO 1是在JSR51里面定义的,在JDK1.4中引入,因为BolckingIO不支持高并 ...
- django 调试工具 django-tool-bar
这里介绍一个好用的Django调试工具-django-tool-bar,主要用来调试性能,检测sql耗时,页面渲染耗时,是优化必备良器. 安装 下载 pip install django-debug- ...
- Oracle Autonomous Health Framework (AHF) 解读
AHF介绍 Oracle在2019年10月18日发布自治健康框架Autonomous Health Framework (AHF) 19.3,将ORAchk,EXAchk,TFA三种诊断工具合并入AH ...
- Java并发关键字Volatile 详解
Java并发关键字Volatile 详解 问题引出: 1.Volatile是什么? 2.Volatile有哪些特性? 3.Volatile每个特性的底层实现原理是什么? 相关内容补充: 缓存一致性协议 ...
- BOZJ-2590 优惠券
BOZJ-2590 优惠券 题目: 约翰需要买更多的奶牛!交易市场上有n头奶牛等待出售,第ii头奶牛的原价是\(p_i\)元,使用优惠券之后,折扣价为\(c_i\)元.约翰有m元钱和k张优惠券.请问约 ...
- 将DataTable数据转换成List泛型数据
这里有一个实体类: public class Menuss { public int Id { get; set; } public string Te ...
- Python中类属性和实例属性的区别
在Python中经常会混淆类属性和实例属性的概念,今天专门记录一下个人理解以免日后忘记. 看下面的例子: class Tencent(): i = 10 # 此处i为类属性 def __init__( ...
- 初学者学Java常遇到的问题,我都给你回答了!
前言 只有光头才能变强. 文本已收录至我的GitHub精选文章,欢迎Star:https://github.com/ZhongFuCheng3y/3y 春节在家刷知乎,看到了一个知乎的问题:<学 ...
- 线性最长cover(无讲解)
#include<bits/stdc++.h> using namespace std; ; int n,f[maxn],cover[maxn],R[maxn]; char str[max ...
- Python PE8编程规范
参考博客:https://blog.csdn.net/weixin_39723544/article/details/82144280 1.使用四个空格而不是tab进行缩进 2.默认使用utf-8编码 ...