java中的所说的线程池,一般都是围绕着 ThreadPoolExecutor 来展开的。其他的实现基本都是基于它,或者模仿它的。所以只要理解 ThreadPoolExecutor, 就相当于完全理解了线程池的精髓。

  其实要理解一个东西,一般地,我们最好是要抱着自己的疑问或者理解去的。否则,往往收获甚微。

  理解 ThreadPoolExecutor, 我们可以先理解一个线程池的意义: 本质上是提供预先定义好的n个线程,供调用方直接运行任务的一个工具。

线程池解决的问题:

  1. 提高任务执行的响应速度,降低资源消耗。任务执行时,直接立即使用线程池提供的线程运行,避免了临时创建线程的CPU/内存开销,达到快速响应的效果。

  2. 提高线程的可管理性。线程总数可预知,避免用户主动创建无限多线程导致死机风险,还可以进行线程统一的分配、调优和监控。

  3. 避免对资源的过度使用。在超出预期的请求任务情况,响应策略可控。

线程池提供的核心接口:

  要想使用线程池,自然是要理解其接口的。一般我们使用 ExecotorService 进行线程池的调用。然而,我们并不针对初学者。

  整体的接口如下:

  我们就挑几个常用接口探讨下:

    submit(Runnable task): 提交一个无需返回结果的任务。
    submit(Callable<T> task): 提交一个有返回结果的任务。
    invokeAll(Collection<? extends Callable<T>> tasks, long, TimeUnit): 同时执行n个任务并返回结果列表。
    shutdown(): 关闭线程程池。
    awaitTermination(long timeout, TimeUnit unit): 等待关闭结果,最长不超过timeout时间。

以上是ThreadPoolExector 提供的特性,针对以上特性。

我们应该要有自己的几个实现思路或疑问:

  1. 线程池如何接受任务?

  2. 线程如何运行任务?

  3. 线程池如何关闭?

接下来,就让我们带着疑问去看实现吧。

ThreadPoolExecutor 核心实现原理

1. 线程池的处理流程

  我们首先重点要看的是,如何执行提交的任务。我可以通过下图来看看。

  总结描述下就是:

    1. 判断核心线程池是否已满,如果不是,则创建线程执行任务
    2. 如果核心线程池满了,判断队列是否满了,如果队列没满,将任务放在队列中
    3. 如果队列满了,则判断线程池是否已满,如果没满,创建线程执行任务
    4. 如果线程池也满了,则按照拒绝策略对任务进行处理

  另外,我们来看一下 ThreadPoolExecutor 的构造方法,因为这里会体现出每个属性的含义。

    /**
* Creates a new {@code ThreadPoolExecutor} with the given initial
* parameters.
*
* @param corePoolSize the number of threads to keep in the pool, even
* if they are idle, unless {@code allowCoreThreadTimeOut} is set
* @param maximumPoolSize the maximum number of threads to allow in the
* pool
* @param keepAliveTime when the number of threads is greater than
* the core, this is the maximum time that excess idle threads
* will wait for new tasks before terminating.
* @param unit the time unit for the {@code keepAliveTime} argument
* @param workQueue the queue to use for holding tasks before they are
* executed. This queue will hold only the {@code Runnable}
* tasks submitted by the {@code execute} method.
* @param threadFactory the factory to use when the executor
* creates a new thread
* @param handler the handler to use when execution is blocked
* because the thread bounds and queue capacities are reached
* @throws IllegalArgumentException if one of the following holds:<br>
* {@code corePoolSize < 0}<br>
* {@code keepAliveTime < 0}<br>
* {@code maximumPoolSize <= 0}<br>
* {@code maximumPoolSize < corePoolSize}
* @throws NullPointerException if {@code workQueue}
* or {@code threadFactory} or {@code handler} is null
*/
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}

  从构造方法可以看出 ThreadPoolExecutor 的主要参数 7 个,在其注释上也有说明功能,咱们翻译下每个参数的功能:

    corePoolSize: 线程池核心线程数(平时保留的线程数),使用时机: 在初始时刻,每次请求进来都会创建一个线程直到达到该size
maximumPoolSize: 线程池最大线程数,使用时机: 当workQueue都放不下时,启动新线程,直到最大线程数,此时到达线程池的极限
keepAliveTime/unit: 超出corePoolSize数量的线程的保留时间,unit为时间单位
workQueue: 阻塞队列,当核心线程数达到或者超出后,会先尝试将任务放入该队列由各线程自行消费;
ArrayBlockingQueue: 构造函数一定要传大小
LinkedBlockingQueue: 构造函数不传大小会默认为65536(Integer.MAX_VALUE ),当大量请求任务时,容易造成 内存耗尽。
SynchronousQueue: 同步队列,一个没有存储空间的阻塞队列 ,将任务同步交付给工作线程。
PriorityBlockingQueue: 优先队列
threadFactory:线程工厂,用于线程需要创建时,调用其newThread()生产新线程使用
handler: 饱和策略,当队列已放不下任务,且创建的线程已达到 maximum 后,则不能再处理任务,直接将任务交给饱和策略
AbortPolicy: 直接抛弃(默认)
CallerRunsPolicy: 用调用者的线程执行任务
DiscardOldestPolicy: 抛弃队列中最久的任务
DiscardPolicy: 抛弃当前任务

2. submit 流程详解

  当调用 submit 方法,就是向线程池中提交一个任务,处理流程如步骤1所示。但是我们需要更深入理解。

  submit 方法是定义在 AbstractExecutorService 中,最终调用 ThreadPoolExecutor 的 execute 方法,即是模板方法模式的应用。

    // java.util.concurrent.AbstractExecutorService#submit(java.lang.Runnable, T)
/**
* @throws RejectedExecutionException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public <T> Future<T> submit(Runnable task, T result) {
if (task == null) throw new NullPointerException();
// 封装任务和返回结果为 RunnableFuture, 统一交由具体的子类执行
RunnableFuture<T> ftask = newTaskFor(task, result);
// execute 将会调用 ThreadPoolExecutor 的实现,是我们讨论的重要核心
execute(ftask);
return ftask;
}
// FutureTask 是个重要的线程池组件,它承载了具体的任务执行流
/**
* Returns a {@code RunnableFuture} for the given runnable and default
* value.
*
* @param runnable the runnable task being wrapped
* @param value the default value for the returned future
* @param <T> the type of the given value
* @return a {@code RunnableFuture} which, when run, will run the
* underlying runnable and which, as a {@code Future}, will yield
* the given value as its result and provide for cancellation of
* the underlying task
* @since 1.6
*/
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
return new FutureTask<T>(runnable, value);
} // ThreadPoolExecutor 的任务提交过程
// java.util.concurrent.ThreadPoolExecutor#execute
/**
* Executes the given task sometime in the future. The task
* may execute in a new thread or in an existing pooled thread.
*
* If the task cannot be submitted for execution, either because this
* executor has been shutdown or because its capacity has been reached,
* the task is handled by the current {@code RejectedExecutionHandler}.
*
* @param command the task to execute
* @throws RejectedExecutionException at discretion of
* {@code RejectedExecutionHandler}, if the task
* cannot be accepted for execution
* @throws NullPointerException if {@code command} is null
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
// ctl 是一个重要的控制全局状态的数据结构,定义为一个线程安全的 AtomicInteger
// ctl = new AtomicInteger(ctlOf(RUNNING, 0));
int c = ctl.get();
// 当还没有达到核心线程池的数量时,直接添加1个新线程,然后让其执行任务即可
if (workerCountOf(c) < corePoolSize) {
// 2.1. 添加新线程,且执行command任务
// 添加成功,即不需要后续操作了,添加失败,则说明外部环境变化了
if (addWorker(command, true))
return;
c = ctl.get();
}
// 当核心线程达到后,则尝试添加到阻塞队列中,具体添加方法由阻塞队列实现
// isRunning => c < SHUTDOWN;
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// 2.2. 添加队列成功后,还要再次检测线程池的运行状态,决定启动线程或者状态过期
// 2.2.1. 当线程池已关闭,则将刚刚添加的任务移除,走reject策略
if (! isRunning(recheck) && remove(command))
reject(command);
// 2.2.2. 当一个worker都没有时,则添加worker
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 当队列满后,则直接再创建新的线程运行,如果不能再创建线程了,则 reject
else if (!addWorker(command, false))
// 2.3. 拒绝策略处理
reject(command);
}

  通过上面这一小段代码,我们就已经完整地看到了。通过一个 ctl 变量进行全局状态控制,从而保证了线程安全性。整个框架并没有使用锁,但是却是线程安全的。

  整段代码刚好完整描述了线程池的执行流程:

    1. 判断核心线程池是否已满,如果不是,则创建线程执行任务;
    2. 如果核心线程池满了,判断队列是否满了,如果队列没满,将任务放在队列中;
    3. 如果队列满了,则判断线程池是否已满,如果没满,创建线程执行任务;
    4. 如果线程池也满了,则按照拒绝策略对任务进行处理;

2.1. 添加新的worker

  一个worker,即是一个工作线程。

    /**
* Checks if a new worker can be added with respect to current
* pool state and the given bound (either core or maximum). If so,
* the worker count is adjusted accordingly, and, if possible, a
* new worker is created and started, running firstTask as its
* first task. This method returns false if the pool is stopped or
* eligible to shut down. It also returns false if the thread
* factory fails to create a thread when asked. If the thread
* creation fails, either due to the thread factory returning
* null, or due to an exception (typically OutOfMemoryError in
* Thread.start()), we roll back cleanly.
*
* @param firstTask the task the new thread should run first (or
* null if none). Workers are created with an initial first task
* (in method execute()) to bypass queuing when there are fewer
* than corePoolSize threads (in which case we always start one),
* or when the queue is full (in which case we must bypass queue).
* Initially idle threads are usually created via
* prestartCoreThread or to replace other dying workers.
*
* @param core if true use corePoolSize as bound, else
* maximumPoolSize. (A boolean indicator is used here rather than a
* value to ensure reads of fresh values after checking other pool
* state).
* @return true if successful
*/
private boolean addWorker(Runnable firstTask, boolean core) {
// 为确保线程安全,进行CAS反复重试
retry:
for (;;) {
int c = ctl.get();
// 获取runState , c 的高位存储
// c & ~CAPACITY;
int rs = runStateOf(c); // Check if queue empty only if necessary.
// 已经shutdown, firstTask 为空的添加并不会成功
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false; for (;;) {
int wc = workerCountOf(c);
// 如果超出最大允许创建的线程数,则直接失败
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// CAS 更新worker+1数,成功则说明占位成功退出retry,后续的添加操作将是安全的,失败则说明已有其他线程变更该值
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
// runState 变更,则退出到 retry 重新循环
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
// 以下为添加 worker 过程
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
// 使用 Worker 封闭 firstTask 任务,后续运行将由 Worker 接管
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
// 添加 worker 的过程,需要保证线程安全
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
// SHUTDOWN 情况下还是会创建 Worker, 但是后续检测将会失败
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
// 既然是新添加的线程,就不应该是 alive 状态
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
// workers 只是一个工作线程的容器,使用 HashSet 承载
// private final HashSet<Worker> workers = new HashSet<Worker>();
workers.add(w);
int s = workers.size();
// 维护一个全局达到过的最大线程数计数器
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
// worker 添加成功后,进行将worker启起来,里面应该是有一个 死循环,一直在获取任务
// 不然怎么运行添加到队列里的任务呢?
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
// 如果任务启动失败,则必须进行清理,返回失败
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
// 大概添加 worker 的框架明白了,重点对象是 Worker, 我们稍后再讲
// 现在先来看看,添加失败的情况,如何进行
/**
* Rolls back the worker thread creation.
* - removes worker from workers, if present
* - decrements worker count
* - rechecks for termination, in case the existence of this
* worker was holding up termination
*/
private void addWorkerFailed(Worker w) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (w != null)
workers.remove(w);
// ctl 中的 workerCount - 1 , CAS 实现
decrementWorkerCount();
// 尝试处理空闲线程
tryTerminate();
} finally {
mainLock.unlock();
}
}
/**
* Decrements the workerCount field of ctl. This is called only on
* abrupt termination of a thread (see processWorkerExit). Other
* decrements are performed within getTask.
*/
private void decrementWorkerCount() {
do {} while (! compareAndDecrementWorkerCount(ctl.get()));
}
// 停止可能启动的 worker
/**
* Transitions to TERMINATED state if either (SHUTDOWN and pool
* and queue empty) or (STOP and pool empty). If otherwise
* eligible to terminate but workerCount is nonzero, interrupts an
* idle worker to ensure that shutdown signals propagate. This
* method must be called following any action that might make
* termination possible -- reducing worker count or removing tasks
* from the queue during shutdown. The method is non-private to
* allow access from ScheduledThreadPoolExecutor.
*/
final void tryTerminate() {
for (;;) {
int c = ctl.get();
// 线程池正在运行、正在清理、已关闭但队列还未处理完,都不会进行 terminate 操作
if (isRunning(c) ||
// c >= TIDYING
runStateAtLeast(c, TIDYING) ||
(runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
return;
if (workerCountOf(c) != 0) { // Eligible to terminate
// 停止线程的两个方式之一,只中断一个 worker
interruptIdleWorkers(ONLY_ONE);
return;
}
// 以下为整个线程池的后置操作
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// 设置正在清理标识
if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
try {
// 线程池已终止的钩子方法,默认实现为空
terminated();
} finally {
ctl.set(ctlOf(TERMINATED, 0));
// 此处 termination 为唤醒等待关闭的线程
termination.signalAll();
}
return;
}
} finally {
mainLock.unlock();
}
// else retry on failed CAS
}
}
/**
* Interrupts threads that might be waiting for tasks (as
* indicated by not being locked) so they can check for
* termination or configuration changes. Ignores
* SecurityExceptions (in which case some threads may remain
* uninterrupted).
*
* @param onlyOne If true, interrupt at most one worker. This is
* called only from tryTerminate when termination is otherwise
* enabled but there are still other workers. In this case, at
* most one waiting worker is interrupted to propagate shutdown
* signals in case all threads are currently waiting.
* Interrupting any arbitrary thread ensures that newly arriving
* workers since shutdown began will also eventually exit.
* To guarantee eventual termination, it suffices to always
* interrupt only one idle worker, but shutdown() interrupts all
* idle workers so that redundant workers exit promptly, not
* waiting for a straggler task to finish.
*/
private void interruptIdleWorkers(boolean onlyOne) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// 迭代所有 worker
for (Worker w : workers) {
Thread t = w.thread;
// 获取到 worker 的锁之后,再进行 interrupt
if (!t.isInterrupted() && w.tryLock()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
} finally {
w.unlock();
}
}
// 只中断一个 worker, 立即返回, 不保证 interrupt 成功
if (onlyOne)
break;
}
} finally {
mainLock.unlock();
}
}

2.2. 当添加队列成功后,发现线程池状态变更,需要进行移除队列操作

    /**
* Removes this task from the executor's internal queue if it is
* present, thus causing it not to be run if it has not already
* started.
*
* <p>This method may be useful as one part of a cancellation
* scheme. It may fail to remove tasks that have been converted
* into other forms before being placed on the internal queue. For
* example, a task entered using {@code submit} might be
* converted into a form that maintains {@code Future} status.
* However, in such cases, method {@link #purge} may be used to
* remove those Futures that have been cancelled.
*
* @param task the task to remove
* @return {@code true} if the task was removed
*/
public boolean remove(Runnable task) {
// 此移除不一定能成功
boolean removed = workQueue.remove(task);
// 上面已经看过,它会尝试停止一个 worker 线程
tryTerminate(); // In case SHUTDOWN and now empty
return removed;
}

3. 添加失败进行执行拒绝策略

    /**
* Invokes the rejected execution handler for the given command.
* Package-protected for use by ScheduledThreadPoolExecutor.
*/
final void reject(Runnable command) {
// 拒绝策略是在构造方法时传入的,默认为 RejectedExecutionHandler
// 即用户只需实现 rejectedExecution 方法,即可以自定义拒绝策略了
handler.rejectedExecution(command, this);
}

4. Worker 的工作机制

  从上面的实现中,我们可以看到,主要是对 Worker 的添加和 workQueue 的添加,所以具体的工作是由谁完成呢?自然就是 Worker 了。

        // Worker 的构造方法,主要是接受一个 task, 可以为 null, 如果非null, 将在不久的将来被执行
// private final class Worker extends AbstractQueuedSynchronizer implements Runnable
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
// 将 Worker 自身当作一个 任务,绑定到 worker.thread 中
// thread 启动时,worker 就启动了
this.thread = getThreadFactory().newThread(this);
}
// Worker 的主要工作实现,通过一个循环扫描实现
/** Delegates main run loop to outer runWorker */
public void run() {
// 调用 ThreadPoolExecutor 外部实现的 runWorker 方法
runWorker(this);
} /**
* Main worker run loop. Repeatedly gets tasks from queue and
* executes them, while coping with a number of issues:
*
* 1. We may start out with an initial task, in which case we
* don't need to get the first one. Otherwise, as long as pool is
* running, we get tasks from getTask. If it returns null then the
* worker exits due to changed pool state or configuration
* parameters. Other exits result from exception throws in
* external code, in which case completedAbruptly holds, which
* usually leads processWorkerExit to replace this thread.
*
* 2. Before running any task, the lock is acquired to prevent
* other pool interrupts while the task is executing, and then we
* ensure that unless pool is stopping, this thread does not have
* its interrupt set.
*
* 3. Each task run is preceded by a call to beforeExecute, which
* might throw an exception, in which case we cause thread to die
* (breaking loop with completedAbruptly true) without processing
* the task.
*
* 4. Assuming beforeExecute completes normally, we run the task,
* gathering any of its thrown exceptions to send to afterExecute.
* We separately handle RuntimeException, Error (both of which the
* specs guarantee that we trap) and arbitrary Throwables.
* Because we cannot rethrow Throwables within Runnable.run, we
* wrap them within Errors on the way out (to the thread's
* UncaughtExceptionHandler). Any thrown exception also
* conservatively causes thread to die.
*
* 5. After task.run completes, we call afterExecute, which may
* also throw an exception, which will also cause thread to
* die. According to JLS Sec 14.20, this exception is the one that
* will be in effect even if task.run throws.
*
* The net effect of the exception mechanics is that afterExecute
* and the thread's UncaughtExceptionHandler have as accurate
* information as we can provide about any problems encountered by
* user code.
*
* @param w the worker
*/
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
// 不停地从 workQueue 中获取任务,然后执行,就是这么个逻辑
// getTask() 会阻塞式获取,所以 Worker 往往不会立即退出
while (task != null || (task = getTask()) != null) {
// 执行过程中是不允许并发的,即同时只能一个 task 在运行,此时也不允许进行 interrupt
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
// 检测是否已被线程池是否停止 或者当前 worker 被中断
// STOP = 1 << COUNT_BITS;
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
// 中断信息传递
wt.interrupt();
try {
// 任务开始前 切点,默认为空执行
beforeExecute(wt, task);
Throwable thrown = null;
try {
// 直接调用任务的run方法, 具体的返回结果,会被 FutureTask 封装到 某个变量中
// 可以参考以前的文章 (FutureTask是怎样获取到异步执行结果的? https://www.cnblogs.com/yougewe/p/11666284.html)
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
// 任务开始后 切点,默认为空执行
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
// 正常退出,有必要的话,可能重新将 Worker 添加进来
completedAbruptly = false;
} finally {
// 处理退出后下一步操作,可能重新添加 Worker
processWorkerExit(w, completedAbruptly);
}
} /**
* Performs cleanup and bookkeeping for a dying worker. Called
* only from worker threads. Unless completedAbruptly is set,
* assumes that workerCount has already been adjusted to account
* for exit. This method removes thread from worker set, and
* possibly terminates the pool or replaces the worker if either
* it exited due to user task exception or if fewer than
* corePoolSize workers are running or queue is non-empty but
* there are no workers.
*
* @param w the worker
* @param completedAbruptly if the worker died due to user exception
*/
private void processWorkerExit(Worker w, boolean completedAbruptly) {
if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
decrementWorkerCount(); final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
completedTaskCount += w.completedTasks;
workers.remove(w);
} finally {
mainLock.unlock();
} tryTerminate(); int c = ctl.get();
if (runStateLessThan(c, STOP)) {
// 在 Worker 正常退出的情况下,检查是否超时导致,维持最小线程数
if (!completedAbruptly) {
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
if (min == 0 && ! workQueue.isEmpty())
min = 1;
// 如果满足最小线程要求,则直接返回
if (workerCountOf(c) >= min)
return; // replacement not needed
}
// 否则再添加一个Worker到线程池中备用
// 非正常退出,会直接再添加一个Worker
addWorker(null, false);
}
} /**
* Performs blocking or timed wait for a task, depending on
* current configuration settings, or returns null if this worker
* must exit because of any of:
* 1. There are more than maximumPoolSize workers (due to
* a call to setMaximumPoolSize).
* 2. The pool is stopped.
* 3. The pool is shutdown and the queue is empty.
* 4. This worker timed out waiting for a task, and timed-out
* workers are subject to termination (that is,
* {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
* both before and after the timed wait, and if the queue is
* non-empty, this worker is not the last thread in the pool.
*
* @return task, or null if the worker must exit, in which case
* workerCount is decremented
*/
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out? for (;;) {
int c = ctl.get();
int rs = runStateOf(c); // Check if queue empty only if necessary.
// 如果进行了 shutdown, 且队列为空, 则需要将 worker 退出
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
// do {} while (! compareAndDecrementWorkerCount(ctl.get()));
decrementWorkerCount();
return null;
} int wc = workerCountOf(c); // Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
// 线程数据大于最大允许线程,需要删除多余的 Worker
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
} try {
// 如果开户了超时删除功能,则使用 poll, 否则使用 take() 进行阻塞获取
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
// 获取到任务,则可以进行执行了
if (r != null)
return r;
// 如果有超时设置,则会在下一循环时退出
timedOut = true;
}
// 忽略中断异常
// 在这种情况下,Worker如何响应外部的中断请求呢??? 思考
catch (InterruptedException retry) {
timedOut = false;
}
}
}

  所以,Worker的作用就体现出来了,一个循环取任务执行任务过程:

    1. 有一个主循环一直进行任务的获取;
    2. 针对有超时的设置,会使用poll进行获取任务,如果超时,则 Worker 将会退出循环结束线程;
    3. 无超时的设置,则会使用 take 进行阻塞式获取,直到有值;
    4. 获取任务执行前置+业务+后置任务;
    5. 当获取到null的任务之后,当前Worker将会结束;
    6. 当前Worker结束后,将会判断是否有必要维护最低Worker数,从而决定是否再添加Worker进来。

  还是借用一个网上同学比较通用的一个图来表述下 Worker/ThreadPoolExecutor 的工作流程吧(已经很完美,不需要再造这轮子了)

5. shutdown 操作实现

  ThreadPoolExecutor 是通过 ctl 这个变量进行全局状态维护的,shutdown 在线程池中也是表现为一个状态,所以应该是比较简单的。

    /**
* Initiates an orderly shutdown in which previously submitted
* tasks are executed, but no new tasks will be accepted.
* Invocation has no additional effect if already shut down.
*
* <p>This method does not wait for previously submitted tasks to
* complete execution. Use {@link #awaitTermination awaitTermination}
* to do that.
*
* @throws SecurityException {@inheritDoc}
*/
public void shutdown() {
// 为保证线程安全,使用 mainLock
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// SecurityManager 检查
checkShutdownAccess();
// 设置状态为 SHUTDOWN
advanceRunState(SHUTDOWN);
// 中断空闲的 Worker, 即相当于依次关闭每个空闲线程
interruptIdleWorkers();
// 关闭钩子,默认实现为空操作,为方便子类实现自定义清理功能
onShutdown(); // hook for ScheduledThreadPoolExecutor
} finally {
mainLock.unlock();
}
// 再
tryTerminate();
}
/**
* Transitions runState to given target, or leaves it alone if
* already at least the given target.
*
* @param targetState the desired state, either SHUTDOWN or STOP
* (but not TIDYING or TERMINATED -- use tryTerminate for that)
*/
private void advanceRunState(int targetState) {
for (;;) {
int c = ctl.get();
// 自身CAS更新成功或者被其他线程更新成功
if (runStateAtLeast(c, targetState) ||
ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
break;
}
}
// 关闭空闲线程(非 running 状态)
/**
* Common form of interruptIdleWorkers, to avoid having to
* remember what the boolean argument means.
*/
private void interruptIdleWorkers() {
// 上文已介绍, 此处 ONLY_ONE 为 false, 即是最大可能地中断所有 Worker
interruptIdleWorkers(false);
} 与 shutdown 对应的,有一个 shutdownNow, 其语义是 立即停止所有任务。
/**
* Attempts to stop all actively executing tasks, halts the
* processing of waiting tasks, and returns a list of the tasks
* that were awaiting execution. These tasks are drained (removed)
* from the task queue upon return from this method.
*
* <p>This method does not wait for actively executing tasks to
* terminate. Use {@link #awaitTermination awaitTermination} to
* do that.
*
* <p>There are no guarantees beyond best-effort attempts to stop
* processing actively executing tasks. This implementation
* cancels tasks via {@link Thread#interrupt}, so any task that
* fails to respond to interrupts may never terminate.
*
* @throws SecurityException {@inheritDoc}
*/
public List<Runnable> shutdownNow() {
List<Runnable> tasks;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
// 与 shutdown 的差别,设置的状态不一样
advanceRunState(STOP);
// 强行中断线程
interruptWorkers();
// 将未完成的任务返回
tasks = drainQueue();
} finally {
mainLock.unlock();
}
tryTerminate();
return tasks;
} /**
* Interrupts all threads, even if active. Ignores SecurityExceptions
* (in which case some threads may remain uninterrupted).
*/
private void interruptWorkers() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
for (Worker w : workers)
// 调用 worker 的提供的中断方法
w.interruptIfStarted();
} finally {
mainLock.unlock();
}
}
// ThreadPoolExecutor.Worker#interruptIfStarted
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
// 直接调用任务的 interrupt
t.interrupt();
} catch (SecurityException ignore) {
}
}
}

6. invokeAll 的实现方式

  invokeAll, 望文生义,即是调用所有给定的任务。想来应该是一个个地添加任务到线程池队列吧。

    // invokeAll 的方法直接在抽象方便中就实现了,它的语义是同时执行n个任务,并同步等待结果返回
// java.util.concurrent.AbstractExecutorService#invokeAll(java.util.Collection<? extends java.util.concurrent.Callable<T>>)
public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
throws InterruptedException {
if (tasks == null)
throw new NullPointerException();
ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
boolean done = false;
try {
for (Callable<T> t : tasks) {
RunnableFuture<T> f = newTaskFor(t);
futures.add(f);
// 依次调用各子类的实现,添加任务
execute(f);
}
for (int i = 0, size = futures.size(); i < size; i++) {
Future<T> f = futures.get(i);
if (!f.isDone()) {
try {
// 依次等待执行结果
f.get();
} catch (CancellationException ignore) {
} catch (ExecutionException ignore) {
}
}
}
done = true;
return futures;
} finally {
if (!done)
for (int i = 0, size = futures.size(); i < size; i++)
futures.get(i).cancel(true);
}
}

  实现很简单,都是些外围调用。

7. ThreadPoolExecutor 的状态值的设计

  通过上面的过程,可以看到,整个ThreadPoolExecutor 非状态的依赖是非常强的。所以一个好的状态值的设计就显得很重要了,runState 代表线程池或者 Worker 的运行状态。如下:

    // runState is stored in the high-order bits
// 整个状态使值使用 ctl 的高三位值进行控制, COUNT_BITS=29
// 1110 0000 0000 0000
private static final int RUNNING = -1 << COUNT_BITS;
// 0000 0000 0000 0000
private static final int SHUTDOWN = 0 << COUNT_BITS;
// 0010 0000 0000 0000
private static final int STOP = 1 << COUNT_BITS;
// 0100 0000 0000 0000
private static final int TIDYING = 2 << COUNT_BITS;
// 0110 0000 0000 0000
private static final int TERMINATED = 3 << COUNT_BITS;
// 整个状态值的大小顺序主: RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED // 而低 29位,则用来保存 worker 的数量,当worker增加时,只要将整个 ctl 增加即可。
// 0001 1111 1111 1111, 即是最大的 worker 数量
private static final int CAPACITY = (1 << COUNT_BITS) - 1; // 整个 ctl 描述为一个 AtomicInteger, 功能如下:
/**
* The main pool control state, ctl, is an atomic integer packing
* two conceptual fields
* workerCount, indicating the effective number of threads
* runState, indicating whether running, shutting down etc
*
* In order to pack them into one int, we limit workerCount to
* (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
* billion) otherwise representable. If this is ever an issue in
* the future, the variable can be changed to be an AtomicLong,
* and the shift/mask constants below adjusted. But until the need
* arises, this code is a bit faster and simpler using an int.
*
* The workerCount is the number of workers that have been
* permitted to start and not permitted to stop. The value may be
* transiently different from the actual number of live threads,
* for example when a ThreadFactory fails to create a thread when
* asked, and when exiting threads are still performing
* bookkeeping before terminating. The user-visible pool size is
* reported as the current size of the workers set.
*
* The runState provides the main lifecycle control, taking on values:
*
* RUNNING: Accept new tasks and process queued tasks
* SHUTDOWN: Don't accept new tasks, but process queued tasks
* STOP: Don't accept new tasks, don't process queued tasks,
* and interrupt in-progress tasks
* TIDYING: All tasks have terminated, workerCount is zero,
* the thread transitioning to state TIDYING
* will run the terminated() hook method
* TERMINATED: terminated() has completed
*
* The numerical order among these values matters, to allow
* ordered comparisons. The runState monotonically increases over
* time, but need not hit each state. The transitions are:
*
* RUNNING -> SHUTDOWN
* On invocation of shutdown(), perhaps implicitly in finalize()
* (RUNNING or SHUTDOWN) -> STOP
* On invocation of shutdownNow()
* SHUTDOWN -> TIDYING
* When both queue and pool are empty
* STOP -> TIDYING
* When pool is empty
* TIDYING -> TERMINATED
* When the terminated() hook method has completed
*
* Threads waiting in awaitTermination() will return when the
* state reaches TERMINATED.
*
* Detecting the transition from SHUTDOWN to TIDYING is less
* straightforward than you'd like because the queue may become
* empty after non-empty and vice versa during SHUTDOWN state, but
* we can only terminate if, after seeing that it is empty, we see
* that workerCount is 0 (which sometimes entails a recheck -- see
* below).
*/
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

8. awaitTermination 等待关闭完成

  从上面的 shutdown, 可以看到,只是写了 SHUTDOWN 标识后,尝试尽可能地中断停止Worker线程,但并不保证中断成功。要想保证停止完成,需要有另外的机制来保证。从 awaitTermination 的语义来说,它是能保证任务停止完成的,那么它是如何保证的呢?

    // ThreadPoolExecutor.awaitTermination()
public boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
for (;;) {
// 只是循环 ctl 状态, 只要 状态为 TERMINATED 状态,则说明已经关闭成功
// 此处 termination 的状态触发是在 tryTerminate 中触发的
if (runStateAtLeast(ctl.get(), TERMINATED))
return true;
if (nanos <= 0)
return false;
nanos = termination.awaitNanos(nanos);
}
} finally {
mainLock.unlock();
}
}

  看起来, awaitTermination 并没有什么特殊操作,而是一直在等待。所以 TERMINATED 是 Worker 自行发生的动作。

  那是在哪里做的操作呢?其实是在获取任务的时候,会检测当前状态是否是 SHUTDOWN, 如果是SHUTDOWN且 队列为空,则会触发获取任务的返回null.从而结束当前 Worker.

  Worker 在结束前会调用 processWorkerExit() 方法,里面会再次调用 tryTerminate(), 当所有 Worker 都运行到这个点后, awaitTermination() 就会收到通知了。(注意: processWorkerExit() 会在每次运行后进行 addWorker() 尝试,但是在 SHUTDOWN 状态的添加操作总是失败的,所以不用考虑)

  到此,你是否可以解答前面的几个问题了呢?

  

线程池技术之:ThreadPoolExecutor 源码解析的更多相关文章

  1. Java 多线程(五)—— 线程池基础 之 FutureTask源码解析

    FutureTask是一个支持取消行为的异步任务执行器.该类实现了Future接口的方法. 如: 取消任务执行 查询任务是否执行完成 获取任务执行结果(”get“任务必须得执行完成才能获取结果,否则会 ...

  2. 并发编程(十二)—— Java 线程池 实现原理与源码深度解析 之 submit 方法 (二)

    在上一篇<并发编程(十一)—— Java 线程池 实现原理与源码深度解析(一)>中提到了线程池ThreadPoolExecutor的原理以及它的execute方法.这篇文章是接着上一篇文章 ...

  3. Java并发指南12:深度解读 java 线程池设计思想及源码实现

    ​深度解读 java 线程池设计思想及源码实现 转自 https://javadoop.com/2017/09/05/java-thread-pool/hmsr=toutiao.io&utm_ ...

  4. ThreadPoolExecutor系列<三、ThreadPoolExecutor 源码解析>

    本文系作者原创,转载请注明出处:http://www.cnblogs.com/further-further-further/p/7681826.html 在源码解析前,需要先理清线程池控制的运行状态 ...

  5. ThreadPoolExecutor系列三——ThreadPoolExecutor 源码解析

    ThreadPoolExecutor 源码解析 本文系作者原创,转载请注明出处:http://www.cnblogs.com/further-further-further/p/7681826.htm ...

  6. 【转载】深度解读 java 线程池设计思想及源码实现

    总览 开篇来一些废话.下图是 java 线程池几个相关类的继承结构: 先简单说说这个继承结构,Executor 位于最顶层,也是最简单的,就一个 execute(Runnable runnable) ...

  7. Java并发包源码学习系列:线程池ThreadPoolExecutor源码解析

    目录 ThreadPoolExecutor概述 线程池解决的优点 线程池处理流程 创建线程池 重要常量及字段 线程池的五种状态及转换 ThreadPoolExecutor构造参数及参数意义 Work类 ...

  8. 【Java并发编程】21、线程池ThreadPoolExecutor源码解析

    一.前言 JUC这部分还有线程池这一块没有分析,需要抓紧时间分析,下面开始ThreadPoolExecutor,其是线程池的基础,分析完了这个类会简化之后的分析,线程池可以解决两个不同问题:由于减少了 ...

  9. 第十三章 ThreadPoolExecutor源码解析

    ThreadPoolExecutor使用方式.工作机理以及参数的详细介绍,请参照<第十二章 ThreadPoolExecutor使用与工作机理 > 1.源代码主要掌握两个部分 线程池的创建 ...

  10. Java 1.7 ThreadPoolExecutor源码解析

    Java中使用线程池技术一般都是使用Executors这个工厂类,它提供了非常简单方法来创建各种类型的线程池: public static ExecutorService newFixedThread ...

随机推荐

  1. 力扣90——子集 II

    原题 给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: [1,2,2] 输出: [ [2], [1], [1,2,2], ...

  2. 正基AP6212固件

    需要正基技术资料联系我   QQ507014762  电话17666215391 #AP6212_NVRAM_V1.0.1_20160606 2.4 GHz, 20 MHz BW modeThe fo ...

  3. webapp开发之IIS进程调试

    1.背景 1.当我的手机连接电脑的时候想要调试居然连接不上,之后我将项目发布之后才可以请求(同一局域网下) 2.你们不觉得发布到IIS再附加进程太烦了么?看了看网上全是这种方法,这不科学!VS已经提供 ...

  4. 【题解】P4091 [HEOI2016/TJOI2016]求和

    [题解]P4091 [HEOI2016/TJOI2016]求和 [P4091 HEOI2016/TJOI2016]求和 可以知道\(i,j\)从\(0\)开始是可以的,因为这个时候等于\(0\).这种 ...

  5. 洛谷$P1527$ [国家集训队]矩阵乘法 整体二分

    正解:整体二分 解题报告: 传送门$QwQ$ 阿看到这种查询若干次第$k$小显然就想到整体二分$QwQ$? 然后现在就只要考虑怎么快速求出一个矩形内所有小于某个数的数的个数? 开始我的想法是离散化然后 ...

  6. 用python做推荐系统(二)

    一.简介 继上一篇基于用户的推荐算法,这一篇是要基于商品的,基于用户的好处是可以根据用户的评价记录找出跟他兴趣相似的用户,再推荐这些用户也喜欢的电影,但是万一这个用户是新用户呢?或是他还没有对任何电影 ...

  7. Atom + Texlive 配置 Latex 环境

    Atom + Texlive 配置 Latex 环境 步骤1: 安装TexliveTexlive点击 "Download" 下载,然后安装,等待安装完成即可 步骤2: 安装Atom ...

  8. 【转】线性插值(Linear Interpolation)基本原理

    转:https://blog.csdn.net/u010312937/article/details/82055431 今天在阅读大牛代码的时候,发现了Linear Interpolation一次,百 ...

  9. CentOS7设置静态IP以及windows下ping不通虚拟机、虚拟机ping不通外网解决方案

    问题:CentOS7安装完成后默认使用的是动态IP,当你每次重新启动CentOS7后,它的IP地址都不一样.一般我们都是使用远程连接工具连接CentOS7进行操作,如果每次IP都不一样,系统启动后,每 ...

  10. Asp.Net Core 学习教程1、初始.Net Core与VS Code 第一个web程序

    1..Net Core介绍 .NET Core是.NET Framework的新一代版本, 是微软开发的第一个具有跨平台(Windows.Macosx.Linux) 能力的应用程序开发框架,未来也将会 ...