$POJ2311\ Cutting\ Game$ 博弈论
正解:博弈论
解题报告:
首先看到说,谁先$balabala$,因为$SG$函数是无法解决这类问题的,于是考虑转化成"不能操作者赢/输"的问题,不难想到先剪出$1\cdot 1$一定是对手剪出了一个$1\cdot n$的格子,于是就变成,不能剪出$1\ x\ n$的格子,不能操作者败
然后就可以直接用$SG$函数,,,?就对于$n\cdot m$的一个局面,剪一道就相当于分成了$i\cdot m$,$(n-i)\cdot m$的两个子游戏(竖着剪差不多就先只讨论横着剪了昂$QwQ$
然后就可以先预处理,爆枚所有局面求这个局面的$SG$函数值,具体来说就开个桶,枚举从哪儿剪的,把所有出边的$SG$值存下来,然后根据$mex$的定义直接从小到大枚举找到$mex$就好
啊好像说得不太清楚$QAQ$,,,?算了看代码就成$QwQ$
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i) const int N=+;
int x,y,vis[N][N],sg[N][N]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
} int main()
{
rp(i,,)
rp(j,,)
{
memset(vis,,sizeof(vis));
rp(k,,j-)vis[sg[i][k]^sg[i][j-k]]=;
rp(k,,i-)vis[sg[k][j]^sg[i-k][j]]=;
rp(k,,)if(!vis[k])sg[i][j]=k,k=;
}
while(scanf("%d%d",&x,&y)!=EOF)printf(sg[x][y]?"WIN":"LOSE");
return ;
}
$POJ2311\ Cutting\ Game$ 博弈论的更多相关文章
- [poj2311]Cutting Game_博弈论
Cutting Game poj-2311 题目大意:题目链接 注释:略. 想法: 我们发现一次操作就是将这个ICG对应游戏图上的一枚棋子变成两枚. 又因为SG定理的存在,记忆化搜索即可. 最后,附上 ...
- POJ2311 Cutting Game(博弈论)
总时间限制: 1000ms 内存限制: 65536kB 描述 Urej loves to play various types of dull games. He usually asks other ...
- 【博弈论】【SG函数】poj2311 Cutting Game
由于异或运算满足结合律,我们把当前状态的SG函数定义为 它所能切割成的所有纸片对的两两异或和之外的最小非负整数. #include<cstdio> #include<set> ...
- POJ2311 Cutting Game 博弈 SG函数
Cutting Game Description Urej loves to play various types of dull games. He usually asks other peopl ...
- POJ2311 Cutting Game
题意 Language:Default Cutting Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6007 Acc ...
- poj 2311 Cutting Game 博弈论
思路:求SG函数!! 代码如下: #include<iostream> #include<cstdio> #include<cmath> #include<c ...
- 博弈论BOSS
基础博弈的小结:http://blog.csdn.net/acm_cxlove/article/details/7854530 经典翻硬币游戏小结:http://blog.csdn.net/acm_c ...
- 博弈问题之SG函数博弈小结
SG函数: 给定一个有向无环图和一个起始顶点上的一枚棋子,两名选手交替的将这枚棋子沿有向边进行移动,无法移 动者判负.事实上,这个游戏可以认为是所有Impartial Combinatorial Ga ...
- 【Mark】博弈类题目小结(HDU,POJ,ZOJ)
转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove 首先当然要献上一些非常好的学习资料: 基础博弈的小 ...
随机推荐
- ORA错误查询手册
ORA-00910: 指定した長さがデータ型に対して長すぎます 原因: データ型CHARまたはRAWに対して指定した長さは.2000を超える値または4000を超える値であるため無効です. 処置: 指定 ...
- 让 AE 输出 MPEG
最近在做视频后期处理,但是我发现 AE 的文件都很大,大概一个 10 分钟视频 10G ,所以有什么办法让他输出的文件变小?一个方法是使用 MPEG 输出. 本文告诉大家如何让 AE 输出 MPEG ...
- Android Studio(十二):打包多个发布渠道的apk文件
Android Studio相关博客: Android Studio(一):介绍.安装.配置 Android Studio(二):快捷键设置.插件安装 Android Studio(三):设置Andr ...
- 2019-8-31-dotnet-将文件删除到回收站
title author date CreateTime categories dotnet 将文件删除到回收站 lindexi 2019-08-31 16:55:58 +0800 2019-03-2 ...
- 2018-5-28-win10-uwp-动态修改ListView元素布局
title author date CreateTime categories win10 uwp 动态修改ListView元素布局 lindexi 2018-05-28 15:15:54 +0800 ...
- iptables禁止icmp端口
除192.168.62.1外,禁止其它人ping我的主机 #iptables -A INPUT -i eth0 -s 192.168.62.1/32 -p icmp -m icmp --icmp-ty ...
- PHP 试题(1)
1.__FILE__表示什么意思?(5分)文件的完整路径和文件名.如果用在包含文件中,则返回包含文件名.自 PHP 4.0.2 起,__FILE__ 总是包含一个绝对路径,而在此之前的版本有时会包含一 ...
- js读取cookie 根据cookie名称获取值、赋值
借鉴:原作者https://blog.csdn.net/zouxuhang/article/details/80548417 //方法1 //存在问题:如果cookie中存在 aaaname= ...
- Java JDBC学习实战(三): 事务管理
一. 数据库的事务特性 事务是一步或多步组成操作序列组成的逻辑执行单元,这个序列要么全部执行,要么则全部放弃执行. 事务的四个特性:原子性(Atomicity).一致性(Consistency).隔离 ...
- spring boot + thymeleaf 乱码问题
spring boot + thymeleaf 乱码问题 hellotrms 发布于 2017/01/17 15:27 阅读 1K+ 收藏 0 答案 1 开发四年只会写业务代码,分布式高并发都不会还做 ...