题面

简化版题意:

有一棵 \(n\) 个点的树,有边权。

你初始在 \(1\) 号节点,你需要走遍整棵树为 \(2 \sim n\) 号点的居民分发电脑,但你的汽油只够经过每条边恰好两次。

一个居民拿到电脑后会马上开始安装软件, \(i\) 号点的居民安装需要 \(c_i\) 的时间。分发完成后你会回到 \(1\) 号点开始安装自己的软件。

求所有人的软件安装完成所需的最少时间。

\(n ≤ 5 × 10^5\)

一眼树形\(\text{DP}\)。

设\(dp_i\)表示遍历 \(i\) 的子树,且所有人都装好软件所需的最少时间,\(sz_i\)表示遍历\(i\)的子树所需的时间。

这个状态很好转移:\(dp_i=\max(dp_i,dp_j+sz_i+1)\),其中\(j\)为\(i\)的儿子。

贪心按照\(sz_i-dp_i\)从小到大转移即可。

最终答案为\(\max(dp_1,sz_1+c_1)\)。

代码并不长。

#include <bits/stdc++.h>
#define DEBUG fprintf(stderr, "Passing [%s] line %d\n", __FUNCTION__, __LINE__)
#define itn int
#define gI gi using namespace std; inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
} const int maxn = 500003; int n, m, c[maxn], cnt;
int tot, head[maxn], ver[maxn * 2], nxt[maxn * 2];
int dp[maxn], sz[maxn], son[maxn]; inline bool cmp(int x, int y)
{
return sz[x] - dp[x] < sz[y] - dp[y]; //排序
} void dfs(int u, int f)
{
if (u != 1) dp[u] = c[u]; //初始化
for (int i = head[u]; i; i = nxt[i])
{
int v = ver[i];
if (v == f) continue;
dfs(v, u);
}
cnt = 0;
for (int i = head[u]; i; i = nxt[i])
{
int v = ver[i];
if (v == f) continue;
son[++cnt] = v; //记录儿子
}
sort(son + 1, son + 1 + cnt, cmp); //将儿子排序
for (int i = 1; i <= cnt; i+=1)
{
dp[u] = max(dp[u], dp[son[i]] + sz[u] + 1); //转移
sz[u] += sz[son[i]] + 2; //更新遍历的时间
}
} inline void add(int u, int v) {ver[++tot] = v, nxt[tot] = head[u], head[u] = tot;} int main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi();
for (int i = 1; i <= n; i+=1) c[i] = gi();
for (int i = 1; i < n; i+=1) {int u = gi(), v = gi(); add(u, v), add(v, u);}
dfs(1, 0);
printf("%d\n", max(dp[1], sz[1] + c[1])); //最终答案
return 0;
}

题解【洛谷P3574】[POI2014]FAR-FarmCraft的更多相关文章

  1. 洛谷 P3574 [POI2014]FAR-FarmCraft

    题目传送门 题目描述 输入输出格式 输入格式: 输出格式: 一行,包含一个整数,代表题目中所说的最小时间. 输入输出样例 样例输入 样例输出 提示 分析 我们设f[x]为遍历完以x为根的子树且将这棵子 ...

  2. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  3. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  4. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  5. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  6. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  7. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  8. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  9. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

  10. 题解 洛谷P2158 【[SDOI2008]仪仗队】

    本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...

随机推荐

  1. tp 框架 文本编辑器 不解析HTML标签

    解析 文本编辑器  空格 {$vo.content|htmlspecialchars_decode|stripslashes|html_entity_decode}

  2. ES6常用语法(二)

    arrow functions (箭头函数) 函数的快捷写法.不需要 function 关键字来创建函数,省略 return 关键字,继承当前上下文的 this 关键字 // ES5 var arr1 ...

  3. 根据ip列表模拟输出redis cluster的主从对应关系

    需求:给点一批ip列表,一个数组或者一个文件,每行一个ip,模拟输出redis cluster的组从关系,前者是master_ip:master_port -> slave_ip:slave_p ...

  4. 洛谷 UVA11388 GCD LCM

    UVA11388 GCD LCM Description of the title PDF The GCD of two positive integers is the largest intege ...

  5. Failed to resolve: com.android.support:appcompat-v7:29.+ 版本不一致错误

    这个问题,困扰了我一天,终于解决, 问题的根本就是 Android studio 的 SDK Build-Tools 与工程所需的不一致.具体讲解如下: 具体解决方案: 1.既然是版本问题,那就的先去 ...

  6. LeetCode 867. 转置矩阵

    题目链接:https://leetcode-cn.com/problems/transpose-matrix/ 给定一个矩阵 A, 返回 A 的转置矩阵. 矩阵的转置是指将矩阵的主对角线翻转,交换矩阵 ...

  7. 42.Pycharm连接数据库出现错误:1045、1044:django.db.utils.OperationalError: (1045, "Access denied for user 'Whois'@'localhost' (using password: YES)”)

    1.在pycharm中设置好数据库的连接信息,连接数据库db01, DATABASES = { 'default': { # 指定所使用的的数据库引擎 'ENGINE': 'django.db.bac ...

  8. 在oracle中使用merge into实现更新和插入数据

    目录 oracle中使用merge into DUAL表解释 使用场景 用法 单表 多表 oracle中使用merge into DUAL表解释 在Oracle数据库中,dual是Oracle中的一个 ...

  9. WebApp开发-Zepto

    zepto.js自己去官网下载哈. DOM操作 $(document).ready(function(){ var $cr = $("<div class='cr'>插入的div ...

  10. Docke-ce 安装

    Docker-ce 的安装 安装系统工具 yum install -y yum-utils device-mapper-persistent-data lvm2 添加docker镜像源 yum-con ...