2298. 异或

(File IO): input:gcdxor.in output:gcdxor.out

时间限制: 1000 ms  空间限制: 262144 KB  具体限制

题目描述

SarvaTathagata是个神仙,一天他在研究数论时,书上有这么一个问题:求不超过n两两的数的gcd。
SarvaTathagata这么神仙的人当然觉得这个是sb题啦。学习之余,他还发现gcd的某一个特别好的性质:如果有两个数i,j满足gcd(i,j)=i^j(这里的^为c++中的异或)的话,那么这两个数组成的数对(i,j)就是一个nb的数对(这里认为(i,j)和(j,i)为相同的,并不需要计算2次)。
当然,SarvaTathagata并不会只满足于判断一个数对是否nb,他还想知道满足两个数都是不超过n并且nb的数对有多少个。
由于SarvaTathagata实在是太神仙了,他认为这种题实在是太简单了。于是他找到了你,看看你是否能解决这个问题。

输入

共一行一个整数n,含义如题所述。

输出

一行一个整数,表示nb的数对的个数。

样例输入

样例输入1

12

样例输入2

123456

样例输出

样例输出1

8

样例输出2

214394

数据范围限制

提示

样例1中共有八对,分别是:
{1,3},{1,5},{1,7},{1,9},{2,6},{1,11},{2,10},{4,12}。

提示有误,特此隐藏


Solution

这是一道数论题,涉及gcd,xor(^),二进制减法。

以上三者中,若你对任何一样过敏,请谨慎食用。

Way one(40分)

用个程序找规律

//gcdxor table
#include<bits/stdc++.h>
using namespace std;
int gcd(int ta,int tb)
{
if(tb==) return ta;
if(ta%!=&&tb%!=) return gcd(tb,ta%tb);
if(ta%==&&tb%!=) return gcd(ta/,tb);
if(ta%!=&&tb%==) return gcd(ta,tb/);
return *gcd(ta/,tb/);
} int ans[];
int n;
bool vis[],memory[][];//memory[i][j]
int search(int num)
{
if(vis[num]) return ans[num];
if(num==)
return ; vis[num]=;
int now=;
for(int i=;i<num;i++)
{
if(gcd(num,i)==(num xor i))
now++;
// if(gcd(i,num)==(i xor num))
// now++; }
// if(gcd(num,num)==(num xor num))
// now++;
ans[num]=ans[num-]+now;
return ans[num];
}
int main()
{
freopen("table4.txt","w",stdout);
cin>>n;
// int s=clock();
int k;
/*
for(k=0;k<=n;k++)
{
if(k==0) {cout<<0<<endl;continue;}
for(int i=1;i<=k;i++)
{
for(int j=1;j<=k;j++)
{
if(gcd(i,j)==(i xor j)){
memory[i][j]=true;
ans[k]++; }
// cout<<memory[i][j]<<" ";
}
// cout<<endl;
} cout<<k<<" "<<ans[k]/2<<endl;
}
*/
// /*
for(int k=;k<=n;k++)
{
if(k==) {cout<<<<endl;continue;}
cout<<k<<" "<<search(k)<<","<<endl;
}
// */
// int e=clock();
// cout<<e-s; return ;
}

可以无视我

找不到……

Code(40分)

#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define IL inline
using namespace std;
short int diff[]{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,};
int n,ans;
IL int gcd(int ta,int tb)
{
if(tb==) return ta;
if(ta%!=&&tb%!=) return gcd(tb,ta%tb);
if(ta%==&&tb%!=) return gcd(ta/,tb);
if(ta%!=&&tb%==) return gcd(ta,tb/);
return *gcd(ta/,tb/);
}
IL int search(int num)
{
if(num==) {
int t=;
for(int i=;i<=;i++) t+=diff[i];
return t;
}
int prev;
if(num>)
prev=search(num-);
int now=;
for(int i=;i<num;i++) if(gcd(num,i)==(num xor i)) now++;
if(gcd(num,num)==(num xor num)) now++;
return prev+now;
}
int main()
{
freopen("gcdxor.in","r",stdin);
freopen("gcdxor.out","w",stdout);
cin>>n;
for(int i=;i<=min(n,);i++)
ans+=diff[i];
if(n<=)
cout<<ans<<endl;
else
cout<<search(n)<<endl;
return ;
}

40分

其实,要是我愿意我可以把表全打出来,但是这个OJ有代码长度限制(5kb)。有毒……

Way two

从大神视角理解这道题:

看到gcd就去想数论嘛

求证:若gcd(a,b)=a xor b,则gcd(a,b)=a-b (a≥b)

转到完整证明

证明:

由更相减损法,可知gcd(a,b)=gcd(b,a-b)

这个的原理与辗转相除法类似,只是把求模换成了减法

若a-b=0,则gcd(a,b)=gcd(b,a-b)=a=b

否则a-b>0,此时gcd(a,b)=gcd(b,a-b)>a-b

所以,gcd(a,b)≥a-b

再分析xor运算和二进制减法

xor:对与每一位,若是相同则为0,若是不同则得1

1^1=0  1^0=1  0^1=1  0^0=0

减法:对于每一位,若是相同则得0,若是1 0则得1,若是0 1则得1并使上一位-1

1-1=0  1-0=1  0-1=-1  0-0=0

那么,如果两数a,b中出现了0->1的情况,则减法会使那一位上出现退位,异或(xor)则不会

所以,a xor b≥a-b

又因为(前面证明的)gcd(a,b)≥a-b

所以gcd(a,b)≥a-b≥a xor b

所以当gcd(a,b)=a xor b时,gcd(a,b)=a-b=a xor b

所以若gcd(a,b)=a xor b,则gcd(a,b)=a-b (a≥b)

证毕

回到此题

现在我已经证出来

若gcd(a,b)=a xor b,则gcd(a,b)=a-b (a≥b)

一看题目,就是当gcd(a,b)=a xor b时

那么我们就可以直接用结论了

设c=a-b,则b=a-c

若数对(a,b)符合条件

则c=a^b

故我只要枚举a和b即可!

Code(90分)

#pragma GCC optimize(2)//这个程序不开O2会超时(90分)
#include<bits/stdc++.h>
using namespace std;
int n,cnt[],sum[];
int main()
{
// freopen("gcdxor.in","r",stdin);
// freopen("gcdxor.out","w",stdout);
cin>>n;
memset(cnt, , sizeof(cnt));
for(int c = ; c <= n; c++)
for(int a = c*; a <= n; a += c) //因为a>=b,所以需要从2*c开始枚举
{
int b = a - c;
if(c == (a ^ b)) cnt[a]++;//统计每个a对应的b的数量
}//^的优先级低于==,所以要打上括号
sum[] = ;
for(int i = ; i <= n; i++)
sum[i] = sum[i-] + cnt[i];
cout<<sum[n];
return ;
}

Code(100分)

#include<bits/stdc++.h>
using namespace std;
int n,sum;
int main()
{
// freopen("gcdxor.in","r",stdin);
// freopen("gcdxor.out","w",stdout);
scanf("%d",&n);
// int s=clock();
for(int c=;c<=n;c++)//c=a-b
for(int a=c*;a<=n;a+=c) //因为a>=b,所以需要从2*c开始枚举
if(c==(a ^ (a-c))) sum++;
//统计每个a对应的b的数量
//^的优先级低于==,所以要打上括号
printf("%d",sum);
// int e=clock();
// cout<<endl<<e-s;
return ;
}

TLE?

细心的你应该发现这个:

不要怕TLE啦

如果你会算复杂度,会一点微积分,会一点金融学,你就要知道:

所以整个程序的时间复杂度为O(nlog(n))

Attention

一、^的优先级低于==,所以要打上括号

二、因为a>=b,所以需要从2*c开始枚举,使得a的最小值为2*c,b=a-c,b的初值值为c且越来越小

三、用前缀和的思想,递归sum[i] = sum[i-1] + cnt[i],即n的答案是在n-1的基础上加上这次枚举的答案

END

纪中9日T4 2298. 异或的更多相关文章

  1. 纪中21日T3 2118. 【2016-12-30普及组模拟】最大公约数

    纪中21日T3 2118. 最大公约数 (File IO): input:gcd.in output:gcd.out 时间限制: 1000 ms  空间限制: 262144 KB  具体限制 Goto ...

  2. 纪中17日T1 2321. 方程

    纪中17日T1 2321. 方程 (File IO): input:cti.in output:cti.out 时间限制: 1000 ms  空间限制: 262144 KB  具体限制   Goto ...

  3. 纪中10日T1 2313. 动态仙人掌

    纪中10日 2313. 动态仙人掌 (File IO): input:dinosaur.in output:dinosaur.out 时间限制: 1500 ms  空间限制: 524288 KB  具 ...

  4. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  5. 纪中23日c组T2 2159. 【2017.7.11普及】max 洛谷P1249 最大乘积

    纪中2159. max 洛谷P1249 最大乘积 说明:这两题基本完全相同,故放在一起写题解 纪中2159. max (File IO): input:max.in output:max.out 时间 ...

  6. 纪中23日c组T3 2161. 【2017.7.11普及】围攻 斐波那契数列

    2161. 围攻 (File IO): input:siege.in output:siege.out 时间限制: 1000 ms  空间限制: 262144 KB  具体限制   Goto Prob ...

  7. 纪中18日c组模拟赛

    T2 GMOJ2127. 电子表格 (File IO): input:excel.in output:excel.out 时间限制: 1000 ms  空间限制: 262144 KB  具体限制   ...

  8. 纪中21日c组T1 1575. 二叉树

    1575. 二叉树 (File IO): input:tree.in output:tree.out 时间限制: 1000 ms  空间限制: 262144 KB  具体限制   Goto Probl ...

  9. 纪中21日c组模拟赛

    AWSL  AWSL  AWSL  AWSL AWSL  AWSL  AWSL  AWSL AWSL  AWSL  AWSL  AWSL AWSL  AWSL  AWSL  AWSL 题解传送 T1  ...

随机推荐

  1. BaseAdapter的三种表达式分析,startActivityForResult的使用

    (一)BaseAdapter的三种表达式: ①逗比式: public View getView(int position, View convertView, ViewGroup parent) { ...

  2. 我学React Native开发的经历(一) 第一周学习,环境搭建及demo1,一个导航跳转页面

    大家好,这是跋涉者,wadereye,说来惭愧, 我是从2017年8月25日左右开始学习React Native的,因为时间不多, 在学习的过程中,感觉资料非常零散,要趟过的坑巨多,遇到的问题也非常多 ...

  3. 配置微软Azure大数据HDInsight云集群

    配置微软Azure大数据HDInsight云集群,存储账户.托管标识等问题也都参考官方文档解决了. 原文在我的开源中国博客 https://my.oschina.net/finchxu/blog/31 ...

  4. 一个支持高网络吞吐量、基于机器性能评分的TCP负载均衡器gobalan

    一个支持高网络吞吐量.基于机器性能评分的TCP负载均衡器gobalan 作者最近用golang实现了一个TCP负载均衡器,灵感来自grpc.几个主要的特性就是: 支持高网络吞吐量 实现了基于机器性能评 ...

  5. 删除我的电脑wps、百度网盘图标

    删除我的电脑wps.百度网盘图标 删除下面子项 输入"计算机\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Expl ...

  6. android webview正确显示音标

    package com.example.fonttest; import android.support.v7.app.ActionBarActivity; import android.webkit ...

  7. No

    1.为什么A/D转换前需要采样保持电路,它的基本原理是什么? 因为被取样的信号是动态,随时改变的,而A/D转换需要时间,在这个转换的过程中,信号是变化的,为了弥补A/D转换的时间差,所以需要采样保持. ...

  8. HDU_5057_分块

    http://acm.hdu.edu.cn/showproblem.php?pid=5057 分块,保存每个块中每位对应数字的和,复杂的是getmum,左右下标所在的块不能直接读取block数组,要重 ...

  9. OpenCV3入门(八)图像边缘检测

    1.边缘检测基础 图像的边缘是图像的基本特征,边缘点是灰度阶跃变化的像素点,即灰度值的导数较大或极大的地方,边缘检测是图像识别的第一步.用图像的一阶微分和二阶微分来增强图像的灰度跳变,而边缘也就是灰度 ...

  10. apache 负载均衡

    此次使用mod_proxy的方式来实现的,因为在Apache2以上的版本中已经集成了,因此不需要再另行安装和配置了. 只需要把注释去掉即可,去掉以下模块的注释: LoadModule proxy_mo ...