Problem:

?? mining relationships in time series data; A new class of relationships in time series data.

traditional methods: discover pair-wise relationships.

Introduction:

Challenge: discovery of complex patterns of relationships between individual time-series. ?? what does this mean?

A common type of relationship in time series data is pairs of time-series with strong Pearson correlations.

In this paper, we define a novel relationship across three time series.

tripole: a group of three time-series, one root node/ two leaf nodes.

Note that a tripole is interesting only if correlation ofT0 withT1+2 is much stronger than correlation of T0 with T1 or T2 individually。

a formal study of tripole and explore their utility in different domains:

需要思考清楚,这个tripole pattern适用于什么domains之下,比如他可以适用于交通数据transportation data/ sea level pressure data 都和区域有关,那如果对于天气,生产,消费的time series关系是否适用,需要认真思考一下。但是我奇怪为什么要衡量T0 and T1+T2的相关性,这种现象在我们的数据中,有什么特殊的代表特征吗。

这种tripole现象,以期并没有进行系统的研究,因此,如何定义tripole,如何发现tripole,如何评估/解释发现的tripole成为了重要的问题。

define; measures to assess its interestingness; discovery with efficiency;

DEFINITIONS:

N time-series, {T1,T2,T3...Tn}

tripole: (T0: T1, T2); root; leaves;

Strength;

Note that while there could be other ways to combine the information in the two leaves, we chose the sum for its simplicity and ease of interpretation.

Jump; 用来判断这个tripole的有趣程度。

PROPOSED APPROACH:

how to discover tripoles in time-series data.

主要描述提出了节约计算的发现tripoles的方法。

EXPERIMENTAL RESULTS AND EVALUATION

两个数据库,海平面压力数据库,location, time series data. 神经影像学数据库,

用到了假设检验,p-value;

PHYSICAL INTERPRETATION OF TRIPOLES

Further validation and study of these tripoles by domain experts could possibly explain the phenomenon that results in the manifestation of these tripoles.

问题:tripole的物理意义应该由该领域的专家进行解释,而且是could possibly explain the phenomenon, 比较弱势的描述。

解释实例:大气中的遥相关,

PP: Tripoles: A new class of relationships in time series data的更多相关文章

  1. PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...

  2. PP: A dual-stage attention-based recurrent neural network for time series prediction

    Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...

  3. Programming Entity Framework 翻译(1)-目录

    1. Introducing the ADO.NET Entity Framework ado.net entity framework 介绍 1 The Entity Relationship Mo ...

  4. JPA 教程

    Entities An entity is a lightweight persistence domain object. Typically an entity represents a tabl ...

  5. 使用Python一步一步地来进行数据分析总结

    原文链接:Step by step approach to perform data analysis using Python译文链接:使用Python一步一步地来进行数据分析--By Michae ...

  6. [转载]NoSQL by Martin Flower

    ============================================================== URL1 nosql ========================== ...

  7. vc++ 内存连续读写操作

    //初始化内存 int *data=(int*)malloc(sizeof(int)*4); ZeroMemory(data, sizeof(int)*4); int *m=(int*)malloc( ...

  8. Understanding Convolution in Deep Learning

    Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...

  9. easyui源码翻译1.32--Tabs(选项卡)

    前言 使用$.fn.tabs.defaults重写默认值对象.下载该插件翻译源码 选项卡显示一批面板.但在同一个时间只会显示一个面板.每个选项卡面板都有头标题和一些小的按钮工具菜单,包括关闭按钮和其他 ...

随机推荐

  1. CDC+ETL实现数据集成方案

    欢迎咨询,合作! weix:wonter 名词解释: CDC又称变更数据捕获(Change Data Capture),开启cdc的源表在插入INSERT.更新UPDATE和删除DELETE活动时会插 ...

  2. 带输入提示的搜索框ajax请求

    先放图 首先要引用的文件有: base.css  https://www.cnblogs.com/chenyingying0/p/12363689.html jquery.js transition. ...

  3. python学习---文件修改

    1.读一行,写一行,判断字符串,修改之. f=open("yesterday2","r",encoding="utf-8") f_new=o ...

  4. 剑指offer-面试题4-二维数组中的查找-数组

    /* 题目: 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序. 请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. */ /* 解题 ...

  5. 「JOI 2017 Final」绳

    题意 loj 做法 首先我们观察到最后能折起来的充要条件是: 只有两个颜色,除首尾外,所有颜色块内的数量为偶数 因为为偶数,我们进一步推论: 所有颜色块起始位置奇偶性相同 然后因为增与减都会有相同花费 ...

  6. 【笔记】机器学习 - 李宏毅 - 2 - Regression + Demo

    Regression 回归 应用领域包括:Stock Market Forecast, Self-driving car, Recommondation,... Step 1: Model 对于宝可梦 ...

  7. contos7命令行访问网址

    1.curl访问: 例子: curl http://www.baidu.com 注意:这种访问只会直接读取网站HTML代码出来 2.elinks访问: yum -y install elinks  : ...

  8. BundlePhobia

    1.BundlePhobia用于分析npm package的依赖.bundle后的大小.下载速度预估等等,帮助你在引用一个package之前了解引入该package的代价. 2.也可以将项目的pack ...

  9. Spark kafka flume

    Flume Flume 是一个分布式.可靠.和高可用的海量日志聚合的系统,支持在系统中定制各类数据发送方,通过监控整个文件目录或者某一个特定文件,用于收集数据:同时Flume也 提供数据写到各种数据接 ...

  10. SSH远程登录、.sh文件后缀运行、l l命令结果说明、VIM模式切换

    目录 SSH远程登录..sh文件后缀运行.l l命令结果说明.VIM模式切换 SSH远程安全登录 .sh文件后缀运行 l l命令结果说明 VIM模式切换 SSH远程登录..sh文件后缀运行.l l命令 ...