python数据结构之二叉树的统计与转换实例
这篇文章主要介绍了python数据结构之二叉树的统计与转换实例,例如统计二叉树的叶子、分支节点,以及二叉树的左右两树互换等,需要的朋友可以参考下
一、获取二叉树的深度
就是二叉树最后的层次,如下图:
实现代码:
代码如下:
def getheight(self):
''' 获取二叉树深度 '''
return self.__get_tree_height(self.root)
def
__get_tree_height(self, root):
if root is 0:
return 0
if root.left is 0 and root.right is 0:
return 1
else:
left = self.__get_tree_height(root.left)
right = self.__get_tree_height(root.right)
if left < right:
return right 1
else:
return left 1
二、叶子的统计
叶子就是二叉树的节点的 left 指针和 right 指针分别指向空的节点
复制代码 代码如下:
def getleafcount(self):
''' 获取二叉树叶子数 '''
return self.__count_leaf_node(self.root)
def
__count_leaf_node(self, root):
res = 0
if root is 0:
return res
if root.left is 0 and root.right is 0:
res = 1
return res
if root.left is not 0:
res = self.__count_leaf_node(root.left)
if root.right is not 0:
res = self.__count_leaf_node(root.right)
return res
三、统计叶子的分支节点
与叶子节点相对的其他节点 left 和 right 的指针指向其他节点
复制代码 代码如下:
def getbranchcount(self):
''' 获取二叉树分支节点数 '''
return self.__get_branch_node(self.root)
def
__get_branch_node(self, root):
if root is 0:
return 0
if root.left is 0 and root.right is 0:
return 0
else:
return 1 self.__get_branch_node(root.left)
self.__get_branch_node(root.right)
四、二叉树左右树互换
代码如下:
def replacelem(self):
''' 二叉树所有结点的左右子树相互交换 '''
self.__replace_element(self.root)
def
__replace_element(self, root):
if root is 0:
return
root.left, root.right = root.right, root.left
self.__replace_element(root.left)
self.__replace_element(root.right)
这些方法和操作,都是运用递归。其实二叉树的定义也是一种递归。附上最后的完整代码:
代码如下:
# -*- coding: utf - 8 - *-
class TreeNode(object):
def
__init__(self, left=0, right=0, data=0):
self.left = left
self.right = right
self.data = data
class BinaryTree(object):
def
__init__(self, root=0):
self.root = root
def
is_empty(self):
if self.root is 0:
return True
else:
return False
def
create(self):
temp = input('enter a value:')
if temp is '#':
return 0
treenode = TreeNode(data=temp)
if self.root is 0:
self.root = treenode
treenode.left = self.create()
treenode.right = self.create()
def
preorder(self, treenode):
'前序(pre-order,NLR)遍历'
if treenode is 0:
return
print treenode.data
self.preorder(treenode.left)
self.preorder(treenode.right)
def
inorder(self, treenode):
'中序(in-order,LNR'
if treenode is 0:
return
self.inorder(treenode.left)
print treenode.data
self.inorder(treenode.right)
def
postorder(self, treenode):
'后序(post-order,LRN)遍历'
if treenode is 0:
return
self.postorder(treenode.left)
self.postorder(treenode.right)
print treenode.data
def
preorders(self, treenode):
'前序(pre-order,NLR)非递归遍历'
stack = []
while treenode or stack:
if treenode is not 0:
print treenode.data
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
treenode = treenode.right
def
inorders(self, treenode):
'中序(in-order,LNR) 非递归遍历'
stack = []
while treenode or stack:
if treenode:
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
print treenode.data
treenode = treenode.right
def
postorders(self, treenode):
'后序(post-order,LRN)非递归遍历'
stack = []
pre = 0
while treenode or stack:
if treenode:
stack.append(treenode)
treenode = treenode.left
elif stack[-1].right != pre:
treenode = stack[-1].right
pre = 0
else:
pre = stack.pop()
print pre.data
# def
postorders(self, treenode):
#
'后序(post-order,LRN)非递归遍历'
#
stack = []
#
queue = []
#
queue.append(treenode)
#
while queue:
#
treenode = queue.pop()
#
if treenode.left:
#
queue.append(treenode.left)
#
if treenode.right:
#
queue.append(treenode.right)
#
stack.append(treenode)
#
while stack:
#
print stack.pop().data
def
levelorders(self, treenode):
'层序(post-order,LRN)非递归遍历'
from collections import deque
if not treenode:
return
q = deque([treenode])
while q:
treenode = q.popleft()
print treenode.data
if treenode.left:
q.append(treenode.left)
if treenode.right:
q.append(treenode.right)
def
getheight(self):
''' 获取二叉树深度 '''
return self.__get_tree_height(self.root)
def
__get_tree_height(self, root):
if root is 0:
return 0
if root.left is 0 and root.right is 0:
return 1
else:
left = self.__get_tree_height(root.left)
right = self.__get_tree_height(root.right)
if left < right:
return right 1
else:
return left 1
def
getleafcount(self):
''' 获取二叉树叶子数 '''
return self.__count_leaf_node(self.root)
def
__count_leaf_node(self, root):
res = 0
if root is 0:
return res
if root.left is 0 and root.right is 0:
res = 1
return res
if root.left is not 0:
res = self.__count_leaf_node(root.left)
if root.right is not 0:
res = self.__count_leaf_node(root.right)
return res
def
getbranchcount(self):
''' 获取二叉树分支节点数 '''
return self.__get_branch_node(self.root)
def
__get_branch_node(self, root):
if root is 0:
return 0
if root.left is 0 and root.right is 0:
return 0
else:
return 1 self.__get_branch_node(root.left)
self.__get_branch_node(root.right)
def
replacelem(self):
''' 二叉树所有结点的左右子树相互交换 '''
self.__replace_element(self.root)
def
__replace_element(self, root):
if root is 0:
return
root.left, root.right = root.right, root.left
self.__replace_element(root.left)
self.__replace_element(root.right)
node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root')
bt = BinaryTree(root)
print u'''
生成的二叉树
------------------------
root
7
8
6
2 5
1 3 4
-------------------------
'''
python数据结构之二叉树的统计与转换实例的更多相关文章
- python数据结构之二叉树的实现
树的定义 树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样.树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形 ...
- Python数据结构之二叉树
本来打算一个学期分别用C++.Python.Java实现数据结构,看来要提前了 这个是Python版本,我写的数据结构尽量保持灵活性,本文bt1是一般的插入法建立二叉树结构,bt2就是可以任意输入,至 ...
- python数据结构之二叉树遍历的实现
本篇是实现二叉树的三种遍历,先序遍历,中序遍历,后序遍历 #!/usr/bin/python # -*- coding: utf-8 -*- class TreeNode(object): def _ ...
- python 数据结构之二叉树
二叉树关键在构建和遍历,python实现相对简单,我们在实现需要用到类,分别设置爱左右子树,根节点,然后从根进行遍历,进行判断,若为空进行树的构建,非空则返回到列表中即可,我在进行遍历时产生了一个错误 ...
- python数据结构之二叉树的遍历实例
遍历方案 从二叉树的递归定义可知,一棵非空的二叉树由根结点及左.右子树这三个基本部分组成.因此,在任一给定结点上,可以按某种次序执行三个操作: 1).访问结点本身(N) 2).遍历该结点的 ...
- python数据结构之二叉树的建立实例
先建立二叉树节点,有一个data数据域,left,right 两个指针域 # coding:utf-8 class TreeNode(object): def __init__(self,left=N ...
- python数据结构树和二叉树简介
一.树的定义 树形结构是一类重要的非线性结构.树形结构是结点之间有分支,并具有层次关系的结构.它非常类似于自然界中的树.树的递归定义:树(Tree)是n(n≥0)个结点的有限集T,T为空时称为空树,否 ...
- Python实现打印二叉树某一层的所有节点
不多说,直接贴程序,如下所示 # -*- coding: utf-8 -*- # 定义二叉树节点类 class TreeNode(object): def __init__(self,data=0,l ...
- python数据结构之图的实现方法
python数据结构之图的实现方法 本文实例讲述了python数据结构之图的实现方法.分享给大家供大家参考.具体如下: 下面简要的介绍下: 比如有这么一张图: A -> B A ...
随机推荐
- 搭建基于Linux6.3+Nginx1.2+PHP5+MySQL5.5的Web服务器全过程
http://blog.chinaunix.net/uid-20639775-id-154497.html
- PHP FILTER_VALIDATE_REGEXP 过滤器
定义和用法 FILTER_VALIDATE_REGEXP 过滤器根据兼容 Perl 的正则表达式来验证值. Name: "validate_regexp" ID-number: 2 ...
- Android项目中引用到其他工程
有的时候我们需要在现有的项目中引用到其他项目的资源和文件,当然我们可以将被引用的工程打成jar包,但是这有个缺点就是,这个改动比较麻烦,除非是被引用的工程的资源和源程序文件不再改动,可以这样做,否则每 ...
- eclipse git项目的冲突文件处理
https://jingyan.baidu.com/article/3c48dd34895a07e10ae35871.html
- Python Elasticsearch api,组合过滤器,term过滤器,正则查询 ,match查询,获取最近一小时的数据
Python Elasticsearch api 描述:ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.下 ...
- python 中的内置高级函数
1.map(function,iterable) map是把迭代对象依次进行函数运算,并返回. 例子: map返回的十分map对象,需要list()函数转化. 2.exec()函数 执行储存在字符串或 ...
- PE代码段中的数据
PE代码段中可能包含一些数据,比如 optional header中的data directory会索引到一些数据,比如import/export table等等: 还有一些jump table/sw ...
- PAT_A1124#Raffle for Weibo Followers
Source: PAT A1124 Raffle for Weibo Followers (20 分) Description: John got a full mark on PAT. He was ...
- 前端(六)—— 伪类选择器:a标签的伪类、内容伪类、索引伪类、取反伪类
a标签的伪类.内容伪类.索引伪类.取反伪类 一.a标签的四大伪类 :link:未访问状态 :hover:悬浮状态 :active:活跃状态 :visited:已访问状态 四大伪类也可用于其他标签 &l ...
- ArcGis基础——把类别代码替换成对应中文名称的方法
挂接! 上面是答案,展开一下就是做一个Excel对照表,就两列,代码与中文名称.然后用类别代码字段匹配挂接. 别傻傻找vbs/py代码,不知道拐个弯.