BZOJ 4455: [Zjoi2016]小星星(容斥+树形dp)
解题思路
首先题目中有两个限制,第一个是两个集合直接必须一一映射,第二个是重新标号后,\(B\)中两点有边\(A\)中也必须有。发现限制\(2\)比较容易满足,考虑化简限制\(1\)。令\(f(S)\)表示重标号后至多出现在\(S\)中的标号且满足条件\(2\)的方案数,令\(g(S)\)表示重标号后恰好出现在\(S\)中的标号满足条件\(2\)的方案数。这应该是容斥里的一个套路。那么有转移方程:
\]
然后问题就转化成为求\(f(S)\)了。令\(h[i][j]\)表示\(i\)点重新标号后是\(j\)的方案数。那么转移的时候考虑\(x\)的儿子\(u\)产生的贡献,可以枚举\(u\)的重标号,然后看他们两个的重标号之间有没有边,如果有的话\(cnt+=h[u][j]\),最后\(u\)对\(h[i][j]\)的贡献就为\(cnt\)。时间复杂度\(O(2^n*n^3)\),在下人丑常数大,\(bzoj\)卡了半天才过。。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std;
const int MAXN = 18;
typedef long long LL;
inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
}
int n,m,head[MAXN],cnt,a[MAXN][MAXN],zz[MAXN];
int to[MAXN<<1],nxt[MAXN<<1],tot;
LL g[MAXN][MAXN],ans,now;
bool use[MAXN];
void out(LL x){
if(!x) return ;
out(x/10);putchar('0'+x%10);
}
inline void add(int bg,int ed){
to[++cnt]=ed,nxt[cnt]=head[bg],head[bg]=cnt;
}
void dfs(int x,int f){
int u;LL sum;
for(register int i=1;i<=tot;i++) g[x][i]=1;
for(register int i=head[x];i;i=nxt[i]){
u=to[i];if(u==f) continue;dfs(u,x);
for(register int j=1;j<=tot;j++){sum=0;
for(register int k=1;k<=tot;k++)
if(a[zz[j]][zz[k]]) sum+=g[u][k];
g[x][j]*=sum;
}
}
}
int main(){
n=rd(),m=rd();int x,y;
for(register int i=1;i<=m;i++){
x=rd(),y=rd();
a[x][y]=a[y][x]=1;
}
for(register int i=1;i<n;i++){
x=rd(),y=rd();
add(x,y),add(y,x);
}int num;
for(register int S=1;S<1<<n;S++){
tot=0;num=0;now=0;
for(register int i=1,T=S;T;T>>=1,i++)
if(T&1) num++,zz[++tot]=i;
num=n-num;dfs(1,0);for(register int i=1;i<=tot;i++) now+=g[1][i];
if(num&1) ans-=now;else ans+=now;
}
if(!ans) putchar('0');else out(ans);
return 0;
}
BZOJ 4455: [Zjoi2016]小星星(容斥+树形dp)的更多相关文章
- 【BZOJ 4455】 4455: [Zjoi2016]小星星 (容斥原理+树形DP)
4455: [Zjoi2016]小星星 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 426 Solved: 255 Description 小Y是 ...
- 4455[Zjoi2016]小星星 容斥+dp
4455: [Zjoi2016]小星星 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 527 Solved: 317[Submit][Status] ...
- 【BZOJ-4455】小星星 容斥 + 树形DP
4455: [Zjoi2016]小星星 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 204 Solved: 137[Submit][Status] ...
- bzoj 4455 [Zjoi2016]小星星 树形dp&容斥
4455: [Zjoi2016]小星星 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 643 Solved: 391[Submit][Status] ...
- BZOJ 4455: [Zjoi2016]小星星 [容斥原理 树形DP]
4455: [Zjoi2016]小星星 题意:一个图删掉一些边形成一棵树,告诉你图和树的样子,求让图上的点和树上的点对应起来有多少方案 看了很多题解又想了一段时间,感觉题解都没有很深入,现在大致有了自 ...
- UOJ185 ZJOI2016 小星星 容斥、树形DP
传送门 先考虑一个暴力的DP:设\(f_{i,j,S}\)表示点\(i\)映射到了图中的点\(j\),且点\(i\)所在子树的所有点映射到了图中的集合\(S\)时的映射方案数,转移暴力地枚举子集即可, ...
- 【BZOJ 4455】 [Zjoi2016]小星星 容斥计数
dalao教导我们,看到计数想容斥……卡常策略:枚举顺序.除去无效状态.(树结构) #include <cstdio> #include <cstring> #include ...
- BZOJ 4455: [Zjoi2016]小星星
Sol 容斥原理+树形DP. 这道题用的容斥思想非常妙啊!主要的思路就是让所有点与S集合中的点对应,可以重复对应,并且可以不用对应完全(意思是是S的子集也可以).这样他有未对应完全的,那就减去,从全都 ...
- BZOJ4455 ZJOI2016小星星(容斥原理+树形dp)
相当于给树上的每个点分配一个编号使父亲和儿子间都有连边. 于是可以考虑树形dp:设f[i][j][k]为i号点的编号为j,其子树中编号集合为k的方案数.转移显然.然而复杂度3n·n3左右,具体我也不知 ...
随机推荐
- Java中基本类型的包装类
基本类型包装类: 项目中我们常常放弃基本类型,用基本类型的包装类 基本类型包装类有哪些: Int--Integer char--Character double--Double 以Intger为例讲述 ...
- Delphi 常用API 函数列表
Delphi 常用API 函数 AdjustWindowRect 给定一种窗口样式,计算获得目标客户区矩形所需的窗口大小AnyPopup 判断屏幕上是否存在任何弹出式窗口ArrangeIconicWi ...
- Delphi 消息函数 SendMessage函数
Delphi中SendMessage使用说明 SendMessage基础知识 函数功能:该函数将指定的消息发送到一个或多个窗口.此函数为指定的窗口调用窗口程序,直到窗口程序处理完消息再返回.而函数Po ...
- session控制登入权限
<?php session_start(); if(empty($_SESSION["uid"]))//判断SESSION是不是为空 { header("locat ...
- linux文件目录颜色及特殊权限对应的颜色
白色:表示普通文件蓝色:表示目录绿色:表示可执行文件红色:表示压缩文件浅蓝色:链接文件红色闪烁:表示链接的文件有问题黄色:表示设备文件灰色:表示其它文件 各种背景颜色的显示和文件的权限有关红色背景:特 ...
- AcWing 197. 阶乘分解 (筛法)打卡
给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pipi 和 cici 即可. 输入格式 一个整数N. 输出格式 N! 分解质因数后的结果,共若干行,每行一对pi, ...
- C#简单游戏外挂制作(以Warcraft Ⅲ为例)
网上有很多外挂制作的教程,大多是讲针对大型网络游戏的,主要包含一些抓包.反汇编.C++的知识综合.事实也如此,常见的外挂都是使用VC++写的,从来没有过C#或者其他.NET语言编写的外挂. 作为微软. ...
- centos7 安装telent和telnet-server
安装centos7 无telnet命令 先检查CentOS7.0是否已经安装以下两个安装包:telnet-server.xinetd.命令如下: rpm -q telnet-server rpm -q ...
- unittest框架学习笔记二之discover
coding=utf-8'''Created on 2018/3/29 author:star Project:discover测试用例''' import unittest,time,oslist= ...
- 搭建hadoop集群 单机版
二.在Ubuntu下创建hadoop用户组和用户 这里考虑的是以后涉及到hadoop应用时,专门用该用户操作.用户组名和用户名都设为:hadoop.可以理解为该hadoop用户是属于一 ...