题目链接:https://ac.nowcoder.com/acm/contest/881/D

看此博客之前请先参阅吕凯飞的论文《集合幂级数的性质与应用及其快速算法》,论文中很多符号会被本文延用!

题目大意

  给定一个 n * m 的二维矩阵和 k,定义$count(x) = \sum\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} [v_{i, j} \& x 所表示的二进制位有奇数个一] $,求如下式子:

$$\begin{align*}
\bigoplus\limits_{x = 0}^{2^k - 1} (count(x) * 3^x mod (10^9 + 7))
\end{align*}$$

分析

  首先对于每一个数 x,给它的 k 位二进制位标号,从 1 ~ k,那么每一个数就可以唯一用一个集合 X 来表示,比如 k = 5, x = 10110,那么 X = {2, 3, 5}。
  定义 U 为全集,包含全部 1 ~ k。(为了方便,后面对应字母的大写就代表这个数对应的集合)
  于是我们可以重新定义 count(x) :$count(x) = count(X) = \sum\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} [V_{i, j} \cap X 有奇数个元素] $。
  进而:$count(X) = \frac{1}{2^m}\sum\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} (1 - (-1)^{|V_{i, j} \cap X|}) $,其中:$\prod\limits_{j = 1}^{m} (1 - (-1)^{|V_{i, j} \cap X|}) = 1 + \sum\limits_{j = 1}^{m} (-1)^{|X \cap V_{i, j}| + 1} + \sum\limits_{j_1 = 1}^{m} \sum\limits_{j_2 = 1}^{m} [j_1 \neq j_2] (-1)^{|X \cap V_{i, j_1} \cap V_{i, j_2}| + 2} + \dots + (-1)^{|X \cap (\bigcap\limits_{j = 1}^m V_{i, j})| + m}$
   又:$(-1)^{|Y|} * (-1)^{|X \cap T|} = (-1)^{|(X \cap T) \oplus Y|} = (-1)^{|(X \oplus Y) \cap (T \oplus Y)|}$
 
   ????????????????????(求大佬指点QAQ)
 
  所以$count(X) = \frac{1}{2^m}\sum\limits_{T \subseteq 2^U} f_T * (-1)^{T \cap X} = \frac{1}{2^m} * \hat{f_X}$
  于是我们只要先算出$f$,然后通过 FWT 算出所有 count(X) 就好了。
  时间复杂度为$O(n2^m + k2^k)$

代码如下

2019 牛客多校第一场 D Parity of Tuples的更多相关文章

  1. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  2. 2019牛客多校第一场E ABBA(DP)题解

    链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...

  3. 2019牛客多校第一场A-Equivalent Prefixes

    Equivalent Prefixes 传送门 解题思路 先用单调栈求出两个序列中每一个数左边第一个小于自己的数的下标, 存入a[], b[].然后按照1~n的顺序循环,比较 a[i]和b[i]是否相 ...

  4. 2019牛客多校第一场 A.Equivalent Prefixes

    题目描述 Two arrays u and v each with m distinct elements are called equivalent if and only if RMQ(u,l,r ...

  5. 2019牛客多校第一场 E-ABBA(dp)

    ABBA 题目传送门 解题思路 用dp[i][j]来表示前i+j个字符中,有i个A和j个B的合法情况个数.我们可以让前n个A作为AB的A,因为如果我们用后面的A作为AB的A,我们一定也可以让前面的A对 ...

  6. 【2019牛客多校第一场】XOR

    题意: 给你一个集合A,里边有n个正整数,对于所有A的.满足集合内元素异或和为0的子集S,问你∑|S| n<=1e5,元素<=1e18 首先可以转化问题,不求∑|S|,而是求每个元素属于子 ...

  7. 2019 牛客多校第一场 B Integration

    题目链接:https://ac.nowcoder.com/acm/contest/881/B 题目大意 给定 n 个不同的正整数 ai,求$\frac{1}{\pi}\int_{0}^{\infty} ...

  8. 2019牛客多校第一场E ABBA 贪心 + DP

    题意:问有多少个有(n + m)个A和(n + m)个B的字符串可以凑出n个AB和m个BA. 思路:首先贪心的发现,如果从前往后扫,遇到了一个A,优先把它看成AB的A,B同理.这个贪心策略用邻项交换很 ...

  9. 2019 牛客多校第一场 F Random Point in Triangle

    题目链接:https://ac.nowcoder.com/acm/contest/881/F 题目大意 给定二维平面上 3 个整数表示的点 A,B,C,在三角形 ABC 内随机选一点 P,求期望$E ...

随机推荐

  1. 探索C++的秘密之详解extern

    转载:http://developer.51cto.com/art/200704/46843.htm C和C++对函数的处理方式是不同的.extern "C"是使C++能够调用C写 ...

  2. C++之string面试问题

    1.指针变量指向字符串常量的问题 代码如下: "; 问p[0]=2;是否可以?原因? 答案:不可以.“123456”是字符串常量,存储在常量区,其值不可更改. 2.sizeof求字符串长度问 ...

  3. java8的正确使用姿势

    ackage com.expgiga.Java8; import java.util.ArrayList; import java.util.Arrays; import java.util.List ...

  4. OpenLayers绘制图形

    OpenLayers绘制图形   OpenLayers的显示构成由外向内为: ol.Map:地图对象. ol.layer.Vector:图层对象layer.Map含有多个layer,最终的显示效果是由 ...

  5. 3、Cookie与Session之间有哪些区别或者是优缺点?

    Cookie与Session之间有哪些区别或者是优缺点? 知道了Cookie与Session,我们来做一些简单的总结:   1.Cookie可以存储在浏览器或者本地,session只能存在服务器    ...

  6. swapper_pg_dir的作用

    在内存系统初始化过程中,有如下代码: 1: static void __init pagetable_init(void) 2: { 3: pgd_t *pgd_base = swapper_pg_d ...

  7. 剑指offer——73股票的最大利润

    题目: 假设把某股票的价格按照时间先后顺序存储在数组中,请问买卖该股票一次可能获得的最大利润是多少?例如,一只股票在某些时间节点的价格为{9,11,8,5,7,12,16,14}.如果我们能在价格为5 ...

  8. background-size的值cover、contain和100%

    图1 给一个宽600px,高600px的div添加一张宽480px,高360px的背景图片.不重复显示的情况下,默认显示为图1. 1.background-size: 100% 100%; 会将图片的 ...

  9. java中equse和==做比较记录(转)

    String使用的equals方法和==的区别 equals方法和==的区别   首先大家知道,String既可以作为一个对象来使用,又可以作为一个基本类型来使用.这里指的作为一个基本类型来使用只是指 ...

  10. 【持续更新】leetcode算法-数组篇

    会在近期陆续地完成数组篇的整理,希望对找工作的小伙伴有所帮助.   1.Two Sum:两数相加为一固定值,求其下标.一次遍历数组,用一个hash表存储已经访问过的数及其下标,对于新访问的数value ...