题目链接:https://ac.nowcoder.com/acm/contest/881/D

看此博客之前请先参阅吕凯飞的论文《集合幂级数的性质与应用及其快速算法》,论文中很多符号会被本文延用!

题目大意

  给定一个 n * m 的二维矩阵和 k,定义$count(x) = \sum\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} [v_{i, j} \& x 所表示的二进制位有奇数个一] $,求如下式子:

$$\begin{align*}
\bigoplus\limits_{x = 0}^{2^k - 1} (count(x) * 3^x mod (10^9 + 7))
\end{align*}$$

分析

  首先对于每一个数 x,给它的 k 位二进制位标号,从 1 ~ k,那么每一个数就可以唯一用一个集合 X 来表示,比如 k = 5, x = 10110,那么 X = {2, 3, 5}。
  定义 U 为全集,包含全部 1 ~ k。(为了方便,后面对应字母的大写就代表这个数对应的集合)
  于是我们可以重新定义 count(x) :$count(x) = count(X) = \sum\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} [V_{i, j} \cap X 有奇数个元素] $。
  进而:$count(X) = \frac{1}{2^m}\sum\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} (1 - (-1)^{|V_{i, j} \cap X|}) $,其中:$\prod\limits_{j = 1}^{m} (1 - (-1)^{|V_{i, j} \cap X|}) = 1 + \sum\limits_{j = 1}^{m} (-1)^{|X \cap V_{i, j}| + 1} + \sum\limits_{j_1 = 1}^{m} \sum\limits_{j_2 = 1}^{m} [j_1 \neq j_2] (-1)^{|X \cap V_{i, j_1} \cap V_{i, j_2}| + 2} + \dots + (-1)^{|X \cap (\bigcap\limits_{j = 1}^m V_{i, j})| + m}$
   又:$(-1)^{|Y|} * (-1)^{|X \cap T|} = (-1)^{|(X \cap T) \oplus Y|} = (-1)^{|(X \oplus Y) \cap (T \oplus Y)|}$
 
   ????????????????????(求大佬指点QAQ)
 
  所以$count(X) = \frac{1}{2^m}\sum\limits_{T \subseteq 2^U} f_T * (-1)^{T \cap X} = \frac{1}{2^m} * \hat{f_X}$
  于是我们只要先算出$f$,然后通过 FWT 算出所有 count(X) 就好了。
  时间复杂度为$O(n2^m + k2^k)$

代码如下

2019 牛客多校第一场 D Parity of Tuples的更多相关文章

  1. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  2. 2019牛客多校第一场E ABBA(DP)题解

    链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...

  3. 2019牛客多校第一场A-Equivalent Prefixes

    Equivalent Prefixes 传送门 解题思路 先用单调栈求出两个序列中每一个数左边第一个小于自己的数的下标, 存入a[], b[].然后按照1~n的顺序循环,比较 a[i]和b[i]是否相 ...

  4. 2019牛客多校第一场 A.Equivalent Prefixes

    题目描述 Two arrays u and v each with m distinct elements are called equivalent if and only if RMQ(u,l,r ...

  5. 2019牛客多校第一场 E-ABBA(dp)

    ABBA 题目传送门 解题思路 用dp[i][j]来表示前i+j个字符中,有i个A和j个B的合法情况个数.我们可以让前n个A作为AB的A,因为如果我们用后面的A作为AB的A,我们一定也可以让前面的A对 ...

  6. 【2019牛客多校第一场】XOR

    题意: 给你一个集合A,里边有n个正整数,对于所有A的.满足集合内元素异或和为0的子集S,问你∑|S| n<=1e5,元素<=1e18 首先可以转化问题,不求∑|S|,而是求每个元素属于子 ...

  7. 2019 牛客多校第一场 B Integration

    题目链接:https://ac.nowcoder.com/acm/contest/881/B 题目大意 给定 n 个不同的正整数 ai,求$\frac{1}{\pi}\int_{0}^{\infty} ...

  8. 2019牛客多校第一场E ABBA 贪心 + DP

    题意:问有多少个有(n + m)个A和(n + m)个B的字符串可以凑出n个AB和m个BA. 思路:首先贪心的发现,如果从前往后扫,遇到了一个A,优先把它看成AB的A,B同理.这个贪心策略用邻项交换很 ...

  9. 2019 牛客多校第一场 F Random Point in Triangle

    题目链接:https://ac.nowcoder.com/acm/contest/881/F 题目大意 给定二维平面上 3 个整数表示的点 A,B,C,在三角形 ABC 内随机选一点 P,求期望$E ...

随机推荐

  1. CSScomb.js --- 自定义 CSS 编写风格配置文件

    一.排序分类 1. content overflow position z-index display float ... 表示定位/布局的属性(content比较特殊,作为伪元素不可少的,经常放置于 ...

  2. JZOI1169A 平均数Ave

    #include <cstdio> #include <cmath> #define lztin() read() #define ztyout( a ) printf( &q ...

  3. php中如何实现多进程

    php中如何实现多进程 一.总结 一句话总结: php多进程需要pcntl,posix扩展支持 可以通过 php - m 查看,没安装的话需要重新编译php,加上参数--enable-pcntl,po ...

  4. I/O复用select 使用简介

    一:五种I/O模型区分: 1.阻塞I/O模型      最流行的I/O模型是阻塞I/O模型,缺省情形下,所有套接口都是阻塞的.我们以数据报套接口为例来讲解此模型(我们使用UDP而不是TCP作为例子的原 ...

  5. 洛谷 P3369 【模板】普通平衡树 (Treap)

    题目链接:P3369 [模板]普通平衡树 题意 构造一种数据结构满足给出的 6 种操作. 思路 平衡树 平衡树的模板题. 先学习了一下 Treap. Treap 在插入结点时给该结点随机生成一个额外的 ...

  6. Kali Linux 2018 更新源配置

    查看添加更新源 编辑sources.list,将kali更新源加入其中 sudo vim /etc/apt/sources.list 国内更新源 #阿里云 deb http://mirrors.ali ...

  7. jQuery实用美化input 上传组建

     下载插件    (5)     简要教程 jquery-filestyle是一款可以简单实用的表单文件上传域美化jQuery插件.该插件可以将表单的文件上传域转换为类似Bootstrap按钮组的样式 ...

  8. web项目中实现页面跳转的两种方式

    <a href="javascript:"></a>跳转在网页本身,URL不改变 <a href="#"></a> ...

  9. python3 可变数据类型和不可变数据类型

    python内置有6种对象类型: Number 数值型 int 整型 不可变 float 浮点型 不可变 complex 复数 不可变 String 字符串   不可变 Tuple 元组   不可变 ...

  10. Centos 7 技巧

    查看系统版本详细信息 lsb_release -a 更改邮件MTA alternatives --config mta