1、TensorFlow如何工作?
- TensorFlow特殊的张量计算引擎使得TensorFlow能够很好的满足机器学习的计算需要,从2015年开始发起
- 本书基于TensorFlow0.12+和python3.0+
- 环境安装要求
- pip install -r requirements.txt
- TensorFlow计算的一般流程
- 生成或者导入数据generate or import data
- 所有的机器学习算法都需要数据,在这里我们可以自己生成数据或者使用外部数据,有的时候可以更好地依赖于生成的数据,因为我们想知道期望的结果,有的时候我们会选择使用公开的数据集。
- 转换或者是正则化数据 transform or normalize data
- 有的时候数据并不是TensorFlow能够接受的期望的形式,比如说数据的维度不对或者是数据的类型不对,所以我们必须要在使用之前对数据进行转换处理,大部分的算法需要对数据进行正则化处理,TensorFlow提供了可以正则化处理数据的功能
- data=tf.nn.batch_norm_with_global_normalization(...)
- 设置算法的参数set algorithm parameters
- 我们的算法通常在整个处理过程当中都需要参数,比如说:迭代次数,学习率或则我们选择的其他的固定参数,我们应该以一种良好的形式去初始化那些所有的参数,以便方便我们能够方便用户可以很好的使用它们。
- learning_rate=0.01 iterations=10000
- 初始化变量和占位符initialize variables and placeholders
- tensorflow依赖于用户告诉它们如何进行更改,TensorFlow会在优化过程当中不断的更新变量以减小损失函数,为了做到这些,所以我们需要给占位符喂数据,我们需要初始化所有的那些变量和参数,给以适当的数据类型type和大小size,所以使TensorFlow知道接下来应该怎么做,
- a_var=tf.constant(42)
- x_input=tf.placeholder(tf.float32,[None,input_size])
- y_input=tf.placeholder(tf.float32,[None,num_class])
- 定义模型结构Define Model Structure
- 当我们有了数据,初始化了所有的变量和占位符,接下来我们就应该定义模型结构了,通过构建一个计算图computational graph,我们告诉TensorFlow应该在变量和参数上面执行什么操作以便能够达到我们期望的目的,接下来就计算图将会进行更多的讨论
- y_pred=tf.add(tf.mul(x_input,weights_matrix),b_matrix)
- 定义损失函数declare loss functions
- 定义了模型结构之后,我们开始计算输出,这就是我们为什么定义了损失函数,损失函数的重要之处在于能够告诉我们预期值距离实际值的距离,更多不同的期望函数在接下来会有介绍
- loss=tf.reduce_mean(tf.square(y_actual-y_pred))
- 初始化并且开始训练模型initialize and train model
- 现在我们已经具备了一切,然后开始创建一个实例或者我们的计算图通过给计算图喂入数据,然后让TensorFlow更好的能够改变变量和进行预测我们的训练数据,下面是初始化计算图的一种方式
- with tf,Session(graph=graph) as session:
- session.run()
- 我们可以使用另外一种方式
- session=tf.Session(graph=graph) session.run(....)
- (可选)评估模型 Evaluate the model
- 当我们构建训练完我们的模型之后,我们通过使用新的数据按照一些特定标准来评估我们的模型
- (可选)预测新的结果
- 总结Summary
- 总体来说,在TensorFlow当中可以设计为如下的循环结构
- 通过占位符喂入数据,
- 估算计算图的输出
- 通过损失函数计算期望结果
- 使用反向自动求导更新模型变量
- 重复以上过程直到满足某一个特定的标准
- (完)
附件列表
1、TensorFlow如何工作?的更多相关文章
- Tensorflow学习笔记(一):MNIST机器学习入门
学习深度学习,首先从深度学习的入门MNIST入手.通过这个例子,了解Tensorflow的工作流程和机器学习的基本概念. 一 MNIST数据集 MNIST是入门级的计算机视觉数据集,包含了各种手写数 ...
- (转)TensorFlow 入门
TensorFlow 入门 本文转自:http://www.jianshu.com/p/6766fbcd43b9 字数3303 阅读904 评论3 喜欢5 CS224d-Day 2: 在 Da ...
- TensorFlow从1到2(一)续讲从锅炉工到AI专家
引言 原来引用过一个段子,这里还要再引用一次.是关于苹果的.大意是,苹果发布了新的开发语言Swift,有非常多优秀的特征,于是很多时髦的程序员入坑学习.不料,经过一段头脑体操一般的勤学苦练,发现使用S ...
- 初见TensorFlow :知其所以然
2.1 TensorFlow的主要依赖包 TensorFlow依赖的两个最主要的工具包——Protocol Buffer和Bazel. 2.1.1 Protocol Buffer Protocol B ...
- Tensorflow[架构流程]
1. tensorflow工作流程 如官网所示: 根据整体架构或者代码功能可以分为: 图1.1 tensorflow架构 如图所示,一层C的api接口将底层的核运行时部分与顶层的多语言接口分离开. 而 ...
- Tensorflow之基于MNIST手写识别的入门介绍
Tensorflow是当下AI热潮下,最为受欢迎的开源框架.无论是从Github上的fork数量还是star数量,还是从支持的语音,开发资料,社区活跃度等多方面,他当之为superstar. 在前面介 ...
- 对比深度学习十大框架:TensorFlow 并非最好?
http://www.oschina.net/news/80593/deep-learning-frameworks-a-review-before-finishing-2016 TensorFlow ...
- Torch,Tensorflow使用: Ubuntu14.04(x64)+ CUDA8.0 安装 Torch和Tensorflow
系统配置: Ubuntu14.04(x64) CUDA8.0 cudnn-8.0-linux-x64-v5.1.tgz(Tensorflow依赖) Anaconda 1. Torch安装 Torch是 ...
- windows10配置tensorflow深度学习环境(GPU版)各种坑
我们配置一个tensorflow-gpu版的深度学习环境 windows10 64 python3.5 vs2017(需要C++部分) cuda9.0 cudnn7.1 GeForce GTX1060 ...
随机推荐
- CSS的快速入门
CSS的快速入门 1.CSS要学习的内容主要包括 1. CSS概念和快速入门 2.CSS选择器(重点+难点) 3.美化网页(文字.阴影.超链接.列表.渐变,等) 4.盒子模型 5.浮动 6.定位 2. ...
- Go生成随机数
生成随机数 概念 伪随机数,都是根据一定的算法公式算出来的. 所在包 math/rand 生成随机数的公式需要一个种子数,一般为整数.种子数相同会导致每次启动程序是生成随机数相同,为了避免重复每次生成 ...
- C语言结构体理解
本质就是数学中集合,里面变量相当于元素,难点在于就是:以前做数学题都是别人给了一个集合,算里面的关系,编程不一样的就是,自己定义一个集合.
- DM642学习:CMD、GEL文件
在建立ccs工程的时候,cmd文件和gel文件非常重要,如不能配置好会出现一些莫名其妙的问题. 1. CMD文件: 不同的DSP芯片内集成的存储器大小各异,但其配置方式是类似的.大家可通过查阅DSP芯 ...
- Binary Number(位运算)
#include<bits/stdc++.h> using namespace std; int n; int getBits1(int n)//求取一个数的二进制形式中1的个数. { i ...
- python3练习100题——015
原题链接:http://www.runoob.com/python/python-exercise-example15.html 题目:利用条件运算符的嵌套来完成此题:学习成绩>=90分的同学用 ...
- 初探selenium3原理
从一个启动浏览器并打开百度网页的代码开始 from selenium import webdriver driver = webdriver.chrome() driver.get('https:// ...
- NEON的vsub方法溢出
关于NEON的vsub方法的溢出,结果如下: vsub会产生溢出,根据数据bit表示规律,可知溢出结果和理论正确结果形成互补,比如249-(-7)=256 使用类vreinterpretq_s16_u ...
- 错误记录(三):Python
1,在函数中传入字典代替不定长参数 func(**d) # 传入时候要注意用**解包 2,一些常见的名字少用,容易和系统或其他包重名 3,递归中不能count+=1 #!/usr/bin/python ...
- 创建集群corosync
#环境准备 #设置主机名解析yum -y install pcs pacemaker corosync fence-agents-allsystemctl start pcsd.servicesyst ...