hdu 1087 Super Jumping!(类最长上升子序列)
题意:在一组数中选取一个上升子序列,使得这个子序列的和最大。
解:和最长上升子序列dp过程相似,设dp[i]为以第i位为结尾最大和,那么dp[i]等于max(dp[0],dp[1],,,,,dp[i-1])+a[i],显然这个过程可以用某些数据结构优化,比如线段树,树状数组等。由于普通写法也能过题,并且比较简单,所以这里只给出O(n2)写法。
- #include <algorithm>
- #include <iostream>
- #include <cstring>
- #include <cstdio>
- #include <vector>
- #include <cmath>
- #include <queue>
- #include <deque>
- #include <map>
- using namespace std;
- typedef long long ll;
- const int maxn=1e5+;
- ll n,a[maxn],dp[maxn];
- int main(){
- while(scanf("%lld",&n)!=EOF){
- if(n==)break;
- for(int i=;i<n;i++){
- scanf("%lld",&a[i]);
- }
- ll maxnum=;
- for(int i=;i<n;i++){
- dp[i]=a[i];
- for(int j=;j<i;j++){
- if(a[j]<a[i]){
- dp[i]=max(dp[i],dp[j]+a[i]);
- }
- }
- maxnum=max(maxnum,dp[i]);
- }
- printf("%lld\n",maxnum);
- }
- return ;
- }
hdu 1087 Super Jumping!(类最长上升子序列)的更多相关文章
- HDU 1087 Super Jumping! Jumping! Jumping
HDU 1087 题目大意:给定一个序列,只能走比当前位置大的位置,不可回头,求能得到的和的最大值.(其实就是求最大上升(可不连续)子序列和) 解题思路:可以定义状态dp[i]表示以a[i]为结尾的上 ...
- HDU 1087 Super Jumping! Jumping! Jumping!(求LSI序列元素的和,改一下LIS转移方程)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1087 Super Jumping! Jumping! Jumping! Time Limit: 20 ...
- hdu 1087 Super Jumping! Jumping! Jumping!(动态规划DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1087 Super Jumping! Jumping! Jumping! Time Limit: 200 ...
- HDU 1087 Super Jumping! Jumping! Jumping! 最长递增子序列(求可能的递增序列的和的最大值) *
Super Jumping! Jumping! Jumping! Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64 ...
- hdu 1087 Super Jumping! Jumping! Jumping!(dp 最长上升子序列和)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1087 ------------------------------------------------ ...
- 最长上升子序列模板 hdu 1087 Super Jumping! Jumping! Jumping!
Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. May ...
- HDU - 1087 Super Jumping!Jumping!Jumping!(dp求最长上升子序列的和)
传送门:HDU_1087 题意:现在要玩一个跳棋类游戏,有棋盘和棋子.从棋子st开始,跳到棋子en结束.跳动棋子的规则是下一个落脚的棋子的号码必须要大于当前棋子的号码.st的号是所有棋子中最小的,en ...
- 【最长上升子序列】HDU 1087——Super Jumping! Jumping! Jumping!
来源:点击打开链接 最长上升子序列的考察,是一个简单的DP问题.我们每一次求出从第一个数到当前这个数的最长上升子序列,直至遍历到最后一个数字为止,然后再取dp数组里最大的那个即为整个序列的最长上升子序 ...
- HDU 1087 Super Jumping! Jumping! Jumping!【DP】
解题思路:题目的大意是给出一列数,求这列数里面最长递增数列的和 dp[i]表示到达地点i的最大值,那么是如何达到i的呢,则我们可以考虑没有限制条件时候的跳跃,即可以从第1,2,3,---,i-1个地点 ...
随机推荐
- 如何在kalilinux上安装docker
如何在kalilinux上安装docker 0X00安装背景 在windows上安装docker使用未果后,便决定在kalilinux上安装一个docker 0X01安装步骤 分别在linux终端执行 ...
- redis说明及部署
一.reids 概述 redis全称REmote DIctionary Server.一个基于KV的持久化分布式数据库.所编写的语言为C.与另一个分布式缓存Memcached有几分相似 但是redis ...
- C语言实现matlab的interp2()函数
项目要用到matlab中的Vq = interp2(X,Y,V,Xq,Yq)函数,即把一个已知经纬度和对应值的矩阵,插值变换到一个给定经纬度网格中,也就是对给定网格填值,需要用到插值,这里使用双线性内 ...
- windows、linux 下启用mysql日志功能
在默认情况下,mysql安装是没有启用日志管理功能的,这为后续的维护带来很多不便的地方. 查看是否启用了日志mysql>show variables like 'log_bin'; 怎样知道当前 ...
- 20191225--python学习第二天笔记(补)
1.内容回顾 学习计算机基础 安装解释器 2.语法 print/input 整型 int/字符串 str/布尔类型 boolen 条件语句 and运算符 变量 3.练习 评分规则:用户输入成绩,根据成 ...
- python yml 文件处理
安装 pip install pyyaml import yaml import io s = {'host': {'ip00': '10.0.0.1', 'ip01': {'one': '10.0. ...
- linux入门系列13--磁盘管理之RAID、LVM技术
前一篇文章学习了磁盘分区.格式化.挂载等相关知识,本文将讲解RAID和LVM技术. 磁盘管理操作主要是运维人员用的较多,如果只是单纯的开发人员,可以先略过本文.但是在很多小公司里往往都是一人多用,运维 ...
- CVE-2020-0668-Windows服务跟踪中的普通特权升级错误
CVE-2020-0668-Windows服务跟踪中的普通特权升级错误 在这里中,我将讨论在Windows Service跟踪中发现的任意文件移动漏洞.从我的测试来看,它影响了从Vista到10的所有 ...
- (数据科学学习手札77)基于geopandas的空间数据分析——文件IO
本文对应代码和数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一篇文章中我们对geopandas中的 ...
- (数据科学学习手札78)基于geopandas的空间数据分析——基础可视化
本文对应代码和数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 通过前面的文章,我们已经对geopanda ...