推荐博客 : http://blog.csdn.net/baidu_35643793/article/details/75268911

通常我们在计算除法取模时,并不能直接的取模后再去相除,答案会有问题,在这里我们就引入逆元的,(a/b)%mod = (a*c)%mod , 在这里 c 是 b 的逆元。

即 a/b 的模等于 a*b 的逆元的模;

求逆元的方法 :

(1) 费马小定理

  在是素数的情况下,对任意整数都存在逆元。

  题目中给定的对 P 去模,且 P 是素数,则数X的逆元就是 X^(p-2) 。

 代码示例 :

const ll mod = 998244353;

ll qpow(ll x, ll cnt){

    ll ans = 1;
while(cnt > 0){
if (cnt&1) ans = (ans*x)%mod;
x = (x*x)%mod;
cnt >>= 1;
}
return ans;
}

注意  : 最后的答案一定要在取一次模才可以 !

(2)扩展欧几里得

同余方程 ax = b (mod n) , 当 b = 1 时, ax = 1 (mod n) , 此时称 x 为 a 对模 n 得乘法逆元, 那么就可以转换为 ax - ny = 1 ,逆元存在得条件时 gcd(a, n) = 1 。

代码示例:

void exgcd(ll a, ll b, ll &g, ll &x, ll &y){
if (b == 0) {g = a; x = 1; y = 0;}
else {
exgcd(b, a%b, g, y, x);
y -= (a/b)*x;
}
} ll inv(ll a, ll n){
ll d, x, y;
exgcd(a, n, d, x, y);
return d == 1?(x+n)%n:-1;
}

(3) 欧拉函数

当 p 是素数的时候,由费马小定理值 a^(p) = a (mod p) , 那么则有 a ^ (p-1) = 1 (mod p) , 在变形则由 a ^ (p-2) = a^(-1) (mod p)

当 p 不是素数得时候,这时候就需要借助欧拉函数,

a^(phi(p)) = 1 (mod p)

a*a^(phi(p)-1)≡1      (mod p)

a^(-1)≡a^(phi(p)-1)  (mod p)

逆元(inv)的更多相关文章

  1. 逆元(inv)

    当求解公式:(a/b)%m 时,因b可能会过大,会出现爆精度的情况,所以需变除法为乘法: 设c是b的逆元,则有b*c≡1(mod m): 则(a/b)%m = (a/b)*1%m = (a/b)*b* ...

  2. 逆元Inv(模板+应用)

    逆元: 如果满足公式,则有a 是 b的逆元同时b也是a的逆元. 逆元的应用: 设c为b在对m取余的意义下的逆元: 在求解公式 (a / b) % m的时候,如果b可能会非常的大,所以会出现爆精度的问题 ...

  3. gcd,lcm,ext_gcd,inv

    Least Common Multiple http://acm.hdu.edu.cn/showproblem.php?pid=1019 #include<cstdio> int gcd( ...

  4. hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10

    题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...

  5. A. On The Way to Lucky Plaza 概率 乘法逆元

    A. On The Way to Lucky Plaza time limit per test 1.0 s memory limit per test 256 MB input standard i ...

  6. Codeforces gym 101343 A. On The Way to Lucky Plaza【概率+逆元+精度问题】

     2017 JUST Programming Contest 2.0 题目链接:http://codeforces.com/gym/101343/problem/A A. On The Way to ...

  7. HDU 5698——瞬间移动——————【逆元求组合数】

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  8. 【题解】POJ1845 Sumdiv(乘法逆元+约数和)

    POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可 ...

  9. O(n)求素数,求欧拉函数,求莫比乌斯函数,求对mod的逆元,各种求

    筛素数 void shai() { no[1]=true;no[0]=true; for(int i=2;i<=r;i++) { if(!no[i]) p[++p[0]]=i; int j=1, ...

  10. hdu 5698(杨辉三角的性质+逆元)

    ---恢复内容开始--- 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limi ...

随机推荐

  1. POI 导入、导出Excel

    POI,全称Apache POI,是Apache软件基金会的开放源码函式库,POI提供API给Java程序对Microsoft Office格式档案读和写的功能.项目地址:Apache POI - t ...

  2. Python--day40--threading模块

    import time from threading import Thread class MyThread(Thread): def __init__(self,arg): super().__i ...

  3. Xshell + SVN使用

    切换目录 cd+想跳转到的目录下 文件浏览 ls ll (ll 信息全) svn更新 svn up 编辑 vi vi的命令 文件保存与退出: :q 在文件未作任何修改的情况下退出. :q! 强制退出, ...

  4. P1094 百钱白鸡

    题目描述 公鸡5文钱一只,母鸡3文钱一只,小鸡3只一文钱,用100文钱买100只鸡,其中公鸡,母鸡,小鸡都必须要有,问公鸡,母鸡,小鸡要买多少只刚好凑足100文钱. 输入格式 无. 输出格式 输出所有 ...

  5. mysql导入文件出现Data truncated for column 'xxx' at row 1的原因

    mysql导入文件的时候很容易出现"Data truncated for column 'xxx' at row x",其中字符串里的xxx和x是指具体的列和行数. 有时候,这是因 ...

  6. tab选项卡平滑滚动vue

    <html lang="en"> <head> <meta charset="UTF-8"> <title>Ti ...

  7. ASP.NET WebForm Identity使用

    环境 win10企业版x64+visual studio 2017+.net 4.5 step1 基本使用+邮件确认+密码重置 https://docs.microsoft.com/en-us/asp ...

  8. 【一起学源码-微服务】Nexflix Eureka 源码七:通过单元测试来Debug Eureka注册过程

    前言 上一讲eureka client是如何注册的,一直跟到源码发送http请求为止,当时看eureka client注册时如此费尽,光是找一个regiter的地方就找了半天,那么client端发送了 ...

  9. iOS-NSNotificationCenter通知原理解析

    一.基本概念 NSNotification和NSNotificationCenter是使用观察者模式来实现的用于跨层传递消息. NSNotificationCenter采用单例模式. 二.基本实现 通 ...

  10. 序列化表单数据$("form").serializeArray()

    在做一个后台管理系统类似的项目中发现不能直接取得表单中的数值,于是想到先将表单数据转化为json,然后再用js从json中获取数据,那不就简单了吗? 于是我用了jquery的serializeArra ...