“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文《Understanding the difficulty of training deep feedforward neural networks》,可惜直到近两年,这个方法才逐渐得到更多人的应用和认可。

为了使得网络中信息更好的流动,每一层输出的方差应该尽量相等。
基于这个目标,现在我们就去推导一下:每一层的权重应该满足哪种条件。
文章先假设的是线性激活函数,而且满足0点处导数为1,即

现在我们先来分析一层卷积:

其中ni表示输入个数。

根据概率统计知识我们有下面的方差公式:

特别的,当我们假设输入和权重都是0均值时(目前有了BN之后,这一点也较容易满足),上式可以简化为:

进一步假设输入x和权重w独立同分布,则有:

于是,为了保证输入与输出方差一致,则应该有:

对于一个多层的网络,某一层的方差可以用累积的形式表达:

特别的,反向传播计算梯度时同样具有类似的形式:

综上,为了保证前向传播和反向传播时每一层的方差一致,应满足:

但是,实际当中输入与输出的个数往往不相等,于是为了均衡考量,最终我们的权重方差应满足:

———————————————————————————————————————

———————————————————————————————————————

学过概率统计的都知道 [a,b] 间的均匀分布的方差为:

因此,Xavier初始化的实现就是下面的均匀分布:
——————————————————————————————————————————

———————————————————————————————————————————

下面,我们来看一下caffe中具体是怎样实现的,代码位于include/caffe/filler.hpp文件中。

template <typename Dtype>
class XavierFiller : public Filler<Dtype> {
public:
explicit XavierFiller(const FillerParameter& param)
: Filler<Dtype>(param) {}
virtual void Fill(Blob<Dtype>* blob) {
CHECK(blob->count());
int fan_in = blob->count() / blob->num();
int fan_out = blob->count() / blob->channels();
Dtype n = fan_in; // default to fan_in
if (this->filler_param_.variance_norm() ==
FillerParameter_VarianceNorm_AVERAGE) {
n = (fan_in + fan_out) / Dtype(2);
} else if (this->filler_param_.variance_norm() ==
FillerParameter_VarianceNorm_FAN_OUT) {
n = fan_out;
}
Dtype scale = sqrt(Dtype(3) / n);
caffe_rng_uniform<Dtype>(blob->count(), -scale, scale,
blob->mutable_cpu_data());
CHECK_EQ(this->filler_param_.sparse(), -1)
<< "Sparsity not supported by this Filler.";
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
由上面可以看出,caffe的Xavier实现有三种选择

(1) 默认情况,方差只考虑输入个数:

(2) FillerParameter_VarianceNorm_FAN_OUT,方差只考虑输出个数:

(3) FillerParameter_VarianceNorm_AVERAGE,方差同时考虑输入和输出个数:

之所以默认只考虑输入,我个人觉得是因为前向信息的传播更重要一些
---------------------
作者:shuzfan
来源:CSDN
原文:https://blog.csdn.net/shuzfan/article/details/51338178
版权声明:本文为博主原创文章,转载请附上博文链接!

深度学习——Xavier初始化方法的更多相关文章

  1. 深度学习----Xavier初始化方法

    “Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedf ...

  2. 深度学习的Xavier初始化方法

    在tensorflow中,有一个初始化函数:tf.contrib.layers.variance_scaling_initializer.Tensorflow 官网的介绍为: variance_sca ...

  3. [深度学习] 权重初始化--Weight Initialization

    深度学习中的weight initialization对模型收敛速度和模型质量有重要影响! 在ReLU activation function中推荐使用Xavier Initialization的变种 ...

  4. 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks

    本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...

  5. go微服务框架go-micro深度学习(四) rpc方法调用过程详解

    上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地 ...

  6. 深度学习Momentum(动量方法)

    转自:http://blog.csdn.net/bvl10101111/article/details/72615621 先上结论: 1.动量方法主要是为了解决Hessian矩阵病态条件问题(直观上讲 ...

  7. 深度学习中Xavier初始化

    "Xavier"初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training ...

  8. 网络权重初始化方法总结(下):Lecun、Xavier与He Kaiming

    目录 权重初始化最佳实践 期望与方差的相关性质 全连接层方差分析 tanh下的初始化方法 Lecun 1998 Xavier 2010 ReLU/PReLU下的初始化方法 He 2015 for Re ...

  9. 深度学习常见的优化方法(Optimizer)总结:Adam,SGD,Momentum,AdaGard等

    机器学习的常见优化方法在最近的学习中经常遇到,但是还是不够精通.将自己的学习记录下来,以备不时之需 基础知识: 机器学习几乎所有的算法都要利用损失函数 lossfunction 来检验算法模型的优劣, ...

随机推荐

  1. jnhs中国省市县区mysql数据表不带gps坐标

    1.查省 SELECT * FROM china WHERE china.Pid=0 2.查市 SELECT * FROM chinaWHERE china.Pid=330000 3.查区 SELEC ...

  2. vuex的简单教程

    首先安装vuex npm install vuex --save 然后创建store.js文件里写 import Vue from 'vue' import Vuex from 'vuex' Vue. ...

  3. Win7x64易语言调试进程无法退出

    这是个历史问题,几乎所有的Win7x64机器上都会碰到这个问题 解决方法: 启动黑月重新编译器

  4. CommonJS、requirejs、ES6的对比

    文件路径 首先先搞清楚文件路径的写法,这里我总是记不住,有点晕,正好这次整理一下. 以 / 为起始,表示从根目录开始解析: 以 ./ 为起始,表示从当前目录开始解析: 以 ../ 为起始,表示从上级目 ...

  5. php thrift TServerSocket实现端口复用

    <?php namespace Message\Controller; use Think\Controller; use Thrift\Exception\TException; use Th ...

  6. DirectX11笔记(六)--Direct3D渲染2--VERTEX BUFFER

    原文:DirectX11笔记(六)--Direct3D渲染2--VERTEX BUFFER 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u0103 ...

  7. Git-svn:用git管理svn仓库

    1. 将svn仓库中的项目导入本地git仓库 使用 git svn clone [svn_url] 命令即可完成从svn仓库导入本地,由于该命令会将svn仓库中所有版本的更新都会同步到本地仓库,如果项 ...

  8. Vue源码探究-虚拟DOM的渲染

    Vue源码探究-虚拟DOM的渲染 在虚拟节点的实现一篇中,除了知道了 VNode 类的实现之外,还简要地整理了一下DOM渲染的路径.在这一篇中,主要来分析一下两条路径的具体实现代码. 按照创建 Vue ...

  9. Eslint报错的翻译

    若在git中出现这个 http://eslint.org/docs/rules/eol-last 他是提醒你:在文件末尾要求或禁止换行 比如代码如下: 若在git中出现这个 https://eslin ...

  10. 重磅发布:阿里开源 Open JDK 长期支持版本 Alibaba Dragonwell

    3 月 21 日北京阿里云峰会,阿里巴巴正式宣布对外开源 OpenJDK 长期支持版本 Alibaba Dragonwell.作为 Java 全球管理组织 Java Community Process ...