“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文《Understanding the difficulty of training deep feedforward neural networks》,可惜直到近两年,这个方法才逐渐得到更多人的应用和认可。

为了使得网络中信息更好的流动,每一层输出的方差应该尽量相等。
基于这个目标,现在我们就去推导一下:每一层的权重应该满足哪种条件。
文章先假设的是线性激活函数,而且满足0点处导数为1,即

现在我们先来分析一层卷积:

其中ni表示输入个数。

根据概率统计知识我们有下面的方差公式:

特别的,当我们假设输入和权重都是0均值时(目前有了BN之后,这一点也较容易满足),上式可以简化为:

进一步假设输入x和权重w独立同分布,则有:

于是,为了保证输入与输出方差一致,则应该有:

对于一个多层的网络,某一层的方差可以用累积的形式表达:

特别的,反向传播计算梯度时同样具有类似的形式:

综上,为了保证前向传播和反向传播时每一层的方差一致,应满足:

但是,实际当中输入与输出的个数往往不相等,于是为了均衡考量,最终我们的权重方差应满足:

———————————————————————————————————————

———————————————————————————————————————

学过概率统计的都知道 [a,b] 间的均匀分布的方差为:

因此,Xavier初始化的实现就是下面的均匀分布:
——————————————————————————————————————————

———————————————————————————————————————————

下面,我们来看一下caffe中具体是怎样实现的,代码位于include/caffe/filler.hpp文件中。

template <typename Dtype>
class XavierFiller : public Filler<Dtype> {
public:
explicit XavierFiller(const FillerParameter& param)
: Filler<Dtype>(param) {}
virtual void Fill(Blob<Dtype>* blob) {
CHECK(blob->count());
int fan_in = blob->count() / blob->num();
int fan_out = blob->count() / blob->channels();
Dtype n = fan_in; // default to fan_in
if (this->filler_param_.variance_norm() ==
FillerParameter_VarianceNorm_AVERAGE) {
n = (fan_in + fan_out) / Dtype(2);
} else if (this->filler_param_.variance_norm() ==
FillerParameter_VarianceNorm_FAN_OUT) {
n = fan_out;
}
Dtype scale = sqrt(Dtype(3) / n);
caffe_rng_uniform<Dtype>(blob->count(), -scale, scale,
blob->mutable_cpu_data());
CHECK_EQ(this->filler_param_.sparse(), -1)
<< "Sparsity not supported by this Filler.";
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
由上面可以看出,caffe的Xavier实现有三种选择

(1) 默认情况,方差只考虑输入个数:

(2) FillerParameter_VarianceNorm_FAN_OUT,方差只考虑输出个数:

(3) FillerParameter_VarianceNorm_AVERAGE,方差同时考虑输入和输出个数:

之所以默认只考虑输入,我个人觉得是因为前向信息的传播更重要一些
---------------------
作者:shuzfan
来源:CSDN
原文:https://blog.csdn.net/shuzfan/article/details/51338178
版权声明:本文为博主原创文章,转载请附上博文链接!

深度学习——Xavier初始化方法的更多相关文章

  1. 深度学习----Xavier初始化方法

    “Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedf ...

  2. 深度学习的Xavier初始化方法

    在tensorflow中,有一个初始化函数:tf.contrib.layers.variance_scaling_initializer.Tensorflow 官网的介绍为: variance_sca ...

  3. [深度学习] 权重初始化--Weight Initialization

    深度学习中的weight initialization对模型收敛速度和模型质量有重要影响! 在ReLU activation function中推荐使用Xavier Initialization的变种 ...

  4. 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks

    本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...

  5. go微服务框架go-micro深度学习(四) rpc方法调用过程详解

    上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地 ...

  6. 深度学习Momentum(动量方法)

    转自:http://blog.csdn.net/bvl10101111/article/details/72615621 先上结论: 1.动量方法主要是为了解决Hessian矩阵病态条件问题(直观上讲 ...

  7. 深度学习中Xavier初始化

    "Xavier"初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training ...

  8. 网络权重初始化方法总结(下):Lecun、Xavier与He Kaiming

    目录 权重初始化最佳实践 期望与方差的相关性质 全连接层方差分析 tanh下的初始化方法 Lecun 1998 Xavier 2010 ReLU/PReLU下的初始化方法 He 2015 for Re ...

  9. 深度学习常见的优化方法(Optimizer)总结:Adam,SGD,Momentum,AdaGard等

    机器学习的常见优化方法在最近的学习中经常遇到,但是还是不够精通.将自己的学习记录下来,以备不时之需 基础知识: 机器学习几乎所有的算法都要利用损失函数 lossfunction 来检验算法模型的优劣, ...

随机推荐

  1. drf模块及源码

    drf中的APIView请求生命周期 APIView的as_view(局部禁用csrf) => 调用父类view中的as_view返回view()方法 => 自己的类调用自己的dispat ...

  2. Linux 基础命令3 shell

    echo 显示一行文本 各种展开的实例 波浪线展开 算术表达式展开 支持的运算 奇怪的花括号展开 花括号的..用法 花括号(任选一个)的嵌套 参数展开$符很重要哦(一种展开做另一种的参数) 命令的替换 ...

  3. Leetcode56. Merge Intervals合并区间

    给出一个区间的集合,请合并所有重叠的区间. 示例 1: 输入: [[1,3],[2,6],[8,10],[15,18]] 输出: [[1,6],[8,10],[15,18]] 解释: 区间 [1,3] ...

  4. SQL竖表转横表Json数据

    1.数据准备 create  table  Vertical(  Id  int ,  ProjectName varchar(20),  ProjectValue int ) insert into ...

  5. Django项目:CRM(客户关系管理系统)--15--07PerfectCRM实现King_admin显示注册的表01

    <th ><a href="/kingadmin/{% get_app_name admin_class.model %}/{% get_model_name admin_ ...

  6. 移动端h5禁用浏览器左滑右滑的前进后退功能

    在项目运行过程中发现,用户在有左右滑动前进后退的功能的浏览器上签字时,偶然触发了前进后退会导致canvas像是重置了一样内容消失,所以需要在代码中处理这种情况. 基本原理就是在touchmove事件中 ...

  7. 使用新版本5+SDK创建最简Android原生工程(Android studio)http://ask.dcloud.net.cn/article/13232

    1 使用Android Studio创建一个工程 2 删除原生工程中Java目录下系统默认创建的源代码 3 复制SDK->libs->lib.5plus.base-release.aar文 ...

  8. php手册常用的函数

    <?php ************************************************************/ header("Content-type:tex ...

  9. tomcat的日志不输出日志信息的解决方法

    1.下载日志jar包,例如:commons-logging-1.1.1.jar.放在tomcat的bin目录下,或者是自己项目的lib包里. 2.修改tomcat的bin目录下面的catalina.b ...

  10. PHP学习(数据类型)

    PHP中,支持8种原始类型,其中包括四种标量类型.两种复合类型和两种特殊类型.PHP是一门松散类型的语言,不必向PHP声明变量的数据类型,PHP会自动把变量转换为自动的数据类型,一定程度降低了学习PH ...