题目描述

p^q表示p的q次方,正整数M可以分解为M=(p1^a1)*(p2^a2)*(p3^a3)*……*(pn^an)的形式,其中p1,p2……pn为质数(大于1并且只能被1和自身整除的数叫做质数)。a1,a2……an为整数。例如18=(2^1)*(3^2),45=(3^2)*(5^1)。

给出n和一个质数g,以及正整数M分解后的形式,求M的所有约数中,有多少能被g整除。

输入

第一行 两个数 n和g。 0<n<=10 1<g<100。g为质数。

第二行 n个数 p1到pn  1<pi<100 pi为质数(1<=i<=n)。

第三行 n个数 a1到an  0<=ai<=20 ai为整数(1<=i<=n)。

保证对于任意的i,j(i != j) ,pi != pj

输出

一个数

表示M的所有约数中,有多少能被g整除。

样例输入

2 3
3 5
2 2

样例输出

6

提示

样例解释:

M=(3^2)*(5^2)=9*25=225

225能被3整除的约数有3 9 15 45 75 225 共6个。

 
 
(划重点)
算了懒得打字了..直接安利吧
blog:https://blog.csdn.net/QLU_minoz/article/details/84558501
#include<cstdio>
#include<iostream>
using namespace std;
int a[105],b[105],c[105];
int main(){
int n,g;
cin>>n>>g;
long long ans=0;
int x=0;
for(int i=1;i<=n;i++){
cin>>a[i];
if(a[i]==g){
x=i;
} }
int pn;
for(int i=1;i<=n;i++){
cin>>b[i];
if(i==x){
pn=b[i];
}
}
ans=pn;
for(int i=1;i<=n;i++){
if(i!=x){
ans+=ans*b[i];
}
}
if(x==0){
cout<<0;
}else{
cout<<ans;
}
return 0;
}

  

<QluOJ2018NewCode>约数个数的更多相关文章

  1. 【BZOJ】3994: [SDOI2015]约数个数和

    题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...

  2. hdu1492(约数个数定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...

  3. UVA294DIvisors(唯一分解定理+约数个数)

    题目链接 题意:输入两个整数L,U(L <= U <= 1000000000, u - l <= 10000),统计区间[L,U]的整数中哪一个的正约数最多,多个输出最小的那个 本来 ...

  4. BZOJ3994: [SDOI2015]约数个数和

    Description  设d(x)为x的约数个数,给定N.M,求     Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M.   O ...

  5. BZOJ 3994 约数个数和

    Description 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求\[\sum_{i=1}^{N}\sum_{j=1}^{M}d(ij)\]. Input 输入文件包含多组测试数 ...

  6. hdu 4542 数论 + 约数个数相关 腾讯编程马拉松复赛

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4542 小明系列故事--未知剩余系 Time Limit: 500/200 MS (Java/Others) ...

  7. bzoj:3994:vijos1949: [SDOI2015]约数个数和

    Description  设d(x)为x的约数个数,给定N.M,求     Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M.   O ...

  8. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  9. 【BZOJ3994】约数个数和(莫比乌斯反演)

    [BZOJ3994]约数个数和(莫比乌斯反演) 题面 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] 多组数据\((<=50000组)\) \(n,m<=50000\ ...

随机推荐

  1. Oracle使用——Oracle表字段的增加、删除、修改和重命名

    增加字段 语法 alter table tablename add (column datatype [default value][null/not null]); 说明:alter table 表 ...

  2. Maximum Depth of Binary Tree 树的最大深度

    Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...

  3. VS2008中为控件添加属性(比如前景色,背景色)

    VS2008中没有classwizard,但不要伤心,到了VS2010,classwizard又回来了. 可以参照这篇博客:http://blog.csdn.net/candyliuxj/articl ...

  4. 关闭myeclipse可视化视图

    ctrl+w  关闭各个文件  重新打开即可 方法二:

  5. 单颗GPU计算能力太多、太贵?阿里云发布云上首个轻量级GPU实例

    摘要: 阿里云发布了国内首个公共云上的轻量级GPU异构计算产品——VGN5i实例,该实例打破了传统直通模式的局限,可以提供比单颗物理GPU更细粒度的服务,从而让客户以更低成本.更高弹性开展业务. 在硅 ...

  6. bzoj4152 The Captain

    Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. Input 第一行包含一个正整数n(2 ...

  7. Myeclipse 设置默认注释

    windows-->preference-->Java-->Code Style-->Code Templates code-->New Java files ${fil ...

  8. Java8 Date与LocalDate互转

    Java8 日期时间API,新增了LocalDate.LocalDateTime.LocalTime等线程安全类,接下来要说的是LocalDate与java.util.Date之间的转换. 1.Loc ...

  9. 网站域名加WWW与不加WWW区别

    不知道站长童鞋们有没有注意到,很多网站在打开时,地址栏里的域名有的带有“www.”,而有的网站前面则没有带“www.”这其中有什么区别呢?作为一个新站长,我什么都不懂,就在百度上搜了一艘,也没找到一个 ...

  10. Transformer的PyTorch实现

    Google 2017年的论文 Attention is all you need 阐释了什么叫做大道至简!该论文提出了Transformer模型,完全基于Attention mechanism,抛弃 ...