题目描述

p^q表示p的q次方,正整数M可以分解为M=(p1^a1)*(p2^a2)*(p3^a3)*……*(pn^an)的形式,其中p1,p2……pn为质数(大于1并且只能被1和自身整除的数叫做质数)。a1,a2……an为整数。例如18=(2^1)*(3^2),45=(3^2)*(5^1)。

给出n和一个质数g,以及正整数M分解后的形式,求M的所有约数中,有多少能被g整除。

输入

第一行 两个数 n和g。 0<n<=10 1<g<100。g为质数。

第二行 n个数 p1到pn  1<pi<100 pi为质数(1<=i<=n)。

第三行 n个数 a1到an  0<=ai<=20 ai为整数(1<=i<=n)。

保证对于任意的i,j(i != j) ,pi != pj

输出

一个数

表示M的所有约数中,有多少能被g整除。

样例输入

2 3
3 5
2 2

样例输出

6

提示

样例解释:

M=(3^2)*(5^2)=9*25=225

225能被3整除的约数有3 9 15 45 75 225 共6个。

 
 
(划重点)
算了懒得打字了..直接安利吧
blog:https://blog.csdn.net/QLU_minoz/article/details/84558501
#include<cstdio>
#include<iostream>
using namespace std;
int a[105],b[105],c[105];
int main(){
int n,g;
cin>>n>>g;
long long ans=0;
int x=0;
for(int i=1;i<=n;i++){
cin>>a[i];
if(a[i]==g){
x=i;
} }
int pn;
for(int i=1;i<=n;i++){
cin>>b[i];
if(i==x){
pn=b[i];
}
}
ans=pn;
for(int i=1;i<=n;i++){
if(i!=x){
ans+=ans*b[i];
}
}
if(x==0){
cout<<0;
}else{
cout<<ans;
}
return 0;
}

  

<QluOJ2018NewCode>约数个数的更多相关文章

  1. 【BZOJ】3994: [SDOI2015]约数个数和

    题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...

  2. hdu1492(约数个数定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...

  3. UVA294DIvisors(唯一分解定理+约数个数)

    题目链接 题意:输入两个整数L,U(L <= U <= 1000000000, u - l <= 10000),统计区间[L,U]的整数中哪一个的正约数最多,多个输出最小的那个 本来 ...

  4. BZOJ3994: [SDOI2015]约数个数和

    Description  设d(x)为x的约数个数,给定N.M,求     Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M.   O ...

  5. BZOJ 3994 约数个数和

    Description 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求\[\sum_{i=1}^{N}\sum_{j=1}^{M}d(ij)\]. Input 输入文件包含多组测试数 ...

  6. hdu 4542 数论 + 约数个数相关 腾讯编程马拉松复赛

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4542 小明系列故事--未知剩余系 Time Limit: 500/200 MS (Java/Others) ...

  7. bzoj:3994:vijos1949: [SDOI2015]约数个数和

    Description  设d(x)为x的约数个数,给定N.M,求     Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M.   O ...

  8. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  9. 【BZOJ3994】约数个数和(莫比乌斯反演)

    [BZOJ3994]约数个数和(莫比乌斯反演) 题面 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] 多组数据\((<=50000组)\) \(n,m<=50000\ ...

随机推荐

  1. Servlet工作流程

    1.加载Servlet类 类加载器负责加载servlet类. 当Web容器接收到servlet的第一个请求时,将加载servlet类. 2.创建Servlet实例 Web容器在加载servlet类之后 ...

  2. ORA-03113: end-of-file on communication channel 解决方法

    今天在测试数据库中对一个表插入了大量的数据, 导致数据库卡死 hang 住, 重启数据库后报错如下: C:\Documents and Settings\davidd>sqlplus " ...

  3. Person Re-identification 系列论文笔记(四):Re-ID done right: towards good practices for person re-identification

    Re-ID done right: towards good practices for person re-identification Almazan J, Gajic B, Murray N, ...

  4. React Native等比放大不丢失图片

    9月11号 0.33版本,resizeMode中添加了center, 可以实现一样的功能.不过希望这篇文章还能帮助大家. 之前我们学习了从零学React Native之08Image组件 大家可以发现 ...

  5. 测试安装phpmyadmin4.0

    在测试环境准备测试安装phpmyadmin,测试环境上为一台zabbix 3.4的服务器,已经安装lamp环境. 根据安装文档,从phpmyadmin官网上下载了4.0版本,复制到/var/www/h ...

  6. python 字符串(str)

  7. 输出Excel文件

    /** * * 功能描述: <br> * 〈功能详细描述〉输出excle * * @param titles 标题 * @param contents 内容 * @param fileNa ...

  8. C# Find vs FirstOrDefault

    本文告诉大家,在获得数组第一个元素时,使用哪个方法性能更高. 需要知道,两个方法都是 Linq 的方法,使用之前需要引用 Linq .对于 List 等都是继承可枚举Enumerable这时获取第一个 ...

  9. @hdu - 6427@ Problem B. Beads

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 有 m 种不同颜色的珠子,颜色分别为 1~m,每一种颜色的珠子有 ...

  10. Python--day23--类的命名空间

    当创建一个对象时,就会在内存中分出一块新的空间存放这个对象的属性,这块空间也叫类的命名空间.里面存放着类对象指针可以找到类.