Codeforces 837D 动态规划

传送门:https://codeforces.com/contest/837/problem/D

题意:

给你n个数,问你从这n个数中取出k个数,这k个数的乘积的末尾最多有多少个0

题解:

要想让乘积的末尾有0,实际上就是2的倍数和5的倍数相乘才能得到贡献,所以每个数对答案的贡献实际上就是这个数中包含的2的个数还有这个数中包含的5的数对答案的贡献

设定dp状态为

\(dp[i][j]表示从n个数中选出i个数,其中有j个5的个数,最多有多少个2\)

边界 dp[0][0]=0, else dp[i][j]=-INF

转移:dp[i][j]=max(dp[i][j],dp[i-1][j-cnt5[i]]+cnt2[i])

代码:

#include <set>
#include <map>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define ls rt<<1
#define rs rt<<1|1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********\n")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]\n"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]\n"
#define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]\n"
const int maxn = 3e5 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
LL quick_pow(LL x, LL y) {
LL ans = 1;
while(y) {
if(y & 1) {
ans = ans * x % mod;
} x = x * x % mod;
y >>= 1;
} return ans;
}
struct node {
int cnt2;
int cnt5;
} a[maxn];
int dp[205][205 * 64];
int main() {
#ifndef ONLINE_JUDGE
FIN
#endif
int n, k;
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; i++) {
LL x;
scanf("%lld", &x);
while(x % 2 == 0) {
a[i].cnt2++;
x /= 2;
}
while(x % 5 == 0) {
a[i].cnt5++;
x /= 5;
}
}
LL sum = 0;
memset(dp, -INF, sizeof(dp));
dp[0][0]=0;
for(int i = 1; i <= n; i++) {
sum += a[i].cnt5;
// debug1(a[i].cnt2);
// debug1(sum);
for(int j = min(k, i); j >= 1; j--) {
for(int k = sum; k >= a[i].cnt5; k--) {
// debug2(k,a[i].cnt5);
dp[j][k] = max(dp[j][k], dp[j - 1][k - a[i].cnt5] + a[i].cnt2);
// debug3(j,k,dp[j][k]);
}
}
}
LL ans = 0;
for(int i = 1; i <= sum; i++) {
ans = max(ans, 1LL * min(i, dp[k][i]));
}
printf("%lld\n", ans);
return 0;
}

Codeforces 837D 动态规划的更多相关文章

  1. CodeForces 837D - Round Subset | Educational Codeforces Round 26

    /* CodeForces 837D - Round Subset [ DP ] | Educational Codeforces Round 26 题意: 选k个数相乘让末尾0最多 分析: 第i个数 ...

  2. codeforces 1183H 动态规划

    codeforces 1183H 动态规划 传送门:https://codeforces.com/contest/1183/problem/H 题意: 给你一串长度为n的字符串,你需要寻找出他的最长的 ...

  3. Codeforces 837D Round Subset - 动态规划 - 数论

    Let's call the roundness of the number the number of zeros to which it ends. You have an array of n ...

  4. 【Codeforces 837D】Round Subset

    http://codeforces.com/contest/837/problem/D 分解质因数,即第i个数的因子2的个数为c2[i],因子5的个数为c5[i],末尾零的个数就是min{Σc2[i] ...

  5. Educational Codeforces Round 21 Problem E(Codeforces 808E) - 动态规划 - 贪心

    After several latest reforms many tourists are planning to visit Berland, and Berland people underst ...

  6. Codeforces 837D - Round Subset(dp)

    837D - Round Subset 思路:dp.0是由2*5产生的. ①dp[i][j]表示选i个数,因子2的个数为j时因子5的个数. 状态转移方程:dp[i][j]=max(dp[i][j],d ...

  7. CODEFORCES 429B 动态规划

    http://codeforces.com/problemset/problem/429/B 可以参考这篇文章: http://blog.csdn.net/pure_lady/article/deta ...

  8. CodeForces 366C 动态规划 转化背包思想

    这道题目昨晚比赛没做出来,昨晚隐约觉得就是个动态规划,但是没想到怎么DP,今天想了一下,突然有个点子,即局部最优子结构为 1-j,j<i,遍历i,每次从所有的1到j当中的最优解里面与当前商品进行 ...

  9. Codeforces 607A 动态规划

    A. Chain Reaction time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

随机推荐

  1. TCPThree_C杯 Day1

    题解 或 正规题解 已经很详细,不再赘述. 跟着wjx打代码,不怕卡题. 忘开long long智障错误第四次左偏树

  2. MUI - H5实现ios长按图标后进入图标排序及删除功能的效果

    html5实现ios长按图标后进入图标排序及删除功能的效果 我们知道在ios(国产定制安卓系统基本都有)设备上按下图标,图标就会不停的抖动,并且可以随心拖动排序和删除. 那么问题来了,我们怎么通过ht ...

  3. php表单的种类

    1.text 2.color 3.date 4.datetime 5.email 6.month 7.number 8.range 9.search 10.tel 11.url 12.week 13. ...

  4. thinkphp5.0 模板包含文件

    在index.html里包含layout.html:{include file=“layout”}它这里是以绝对路径查找所包含的文件,默认是view目录下 在这种情况下,要在在index.html里包 ...

  5. Gym - 101962B_Color Changing Sofa

    题意:将一个沙发放到一个分成好几个色块(一个字母代表一种颜色)的房间里,要求沙发染成跟所在色块一样的颜色,沙发分成(0,1)两种,0可以染成一种颜色,1可以染成一种颜色(换句话说,沙发最多两种颜色), ...

  6. MaxCompute如何对SQL查询结果实现分页获取

    由于MaxCompute SQL本身不提供类似数据库的select * from table limit x offset y的分页查询逻辑.但是有很多用户希望在一定场景下能够使用获取类似数据库分页的 ...

  7. 防止chrome主页被篡改并设置为默认打开无痕浏览方式

    1. 找到chrome的快捷方式, 右击打开属性 2. 将目标框内容改为以下内容chrome.exe的目录位置 // ----- 引号中的内容为"PATH\Chrome\Applicatio ...

  8. @loj - 2496@ 「AHOI / HNOI2018」毒瘤

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 从前有一名毒瘤. 毒瘤最近发现了量产毒瘤题的奥秘.考虑如下类型的 ...

  9. HZOJ Drink

    神仙题,打了个whs式暴力卡常卡A了(我没脸),正解还是要打的,然而作者的题解看不懂…… Drink: 看惯了罗马音的小朋友们都会知道r发l的音,题目名:D Link. 每次修改都会改变O( N ^  ...

  10. linux更新系统时间

    查看时间 date 更新时间 yum install ntpdate ntpdate time.windows.com