**机器学习的过程说白了就是让我们编写一个函数使得costfunction最小,并且此时的参数值就是最佳参数值。

定义
假设存在一个代价函数
fun:\(J\left(\theta_{0}, \theta_{1}\right)\)
通过不断地调整\(\theta_{0}\)和\(\theta_{1}\)是函数\(J\left(\theta_{0}, \theta_{1}\right)\)取得最小值

梯度下降就是使J不断通过导数下降的一种算法
\(\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J\left(\theta_{0}, \theta_{1}\right)\)
\(a\)是学习率,也就是梯度下降的效率

  • 如果学习效率过小,则导致J下降太慢,
  • 如果学习效率太大,会导致到不了J最小值,会直接越过最小值,这时候代价函数反而变大了
  • 因此适度最好。参考

线性回归梯度下降

给出梯度下降的参数更新公式,\(\theta_0\)和\(\theta_1\)要同时更新

线性回归算法

说白了就是将梯度下降算法应用到代价函数中,求使代价函数最小的\(\theta_0\)和\(\theta_1\),这个就是多元微积分里面的求偏导数,因为是两个未知数,同时求两个未知数

假设函数和代价函数的关系

晚点我更新一下代码!

梯度下降算法&线性回归算法的更多相关文章

  1. flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )

    1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最 ...

  2. 机器学习算法(优化)之一:梯度下降算法、随机梯度下降(应用于线性回归、Logistic回归等等)

    本文介绍了机器学习中基本的优化算法—梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有 ...

  3. 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)

    在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...

  4. AI-Tensorflow-神经网络优化算法-梯度下降算法-学习率

    记录内容来自<Tensorflow实战Google一书>及MOOC人工智能实践 http://www.icourse163.org/learn/PKU-1002536002?tid=100 ...

  5. 梯度下降算法的一点认识(Ng第一课)

    昨天开始看Ng教授的机器学习课,发现果然是不错的课程,一口气看到第二课. 第一课 没有什么新知识,就是机器学习的概况吧. 第二课 出现了一些听不太懂的概念.其实这堂课主要就讲了一个算法,梯度下降算法. ...

  6. 监督学习:随机梯度下降算法(sgd)和批梯度下降算法(bgd)

    线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就 ...

  7. [机器学习Lesson3] 梯度下降算法

    1. Gradient Descent(梯度下降) 梯度下降算法是很常用的算法,可以将代价函数J最小化.它不仅被用在线性回归上,也被广泛应用于机器学习领域中的众多领域. 1.1 线性回归问题应用 我们 ...

  8. Spark MLib:梯度下降算法实现

    声明:本文参考< 大数据:Spark mlib(三) GradientDescent梯度下降算法之Spark实现> 1. 什么是梯度下降? 梯度下降法(英语:Gradient descen ...

  9. 梯度下降算法对比(批量下降/随机下降/mini-batch)

    大规模机器学习: 线性回归的梯度下降算法:Batch gradient descent(每次更新使用全部的训练样本) 批量梯度下降算法(Batch gradient descent): 每计算一次梯度 ...

随机推荐

  1. 论文翻译:Speech Enhancement Based on the General Transfer Function GSC and Postfiltering

    论文地址:基于通用传递函数GSC和后置滤波的语音增强 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/12232341.html 摘要 在语音增强应 ...

  2. Mybatis注解开发多表一对一,一对多

    Mybatis注解开发多表一对一,一对多 一对一 示例:帐户和用户的对应关系为,多个帐户对应一个用户,在实际开发中,查询一个帐户并同时查询该账户所属的用户信息,即立即加载且在mybatis中表现为一对 ...

  3. jQuery on 绑定的事件 执行两次

    $(".class1").on("click",".class2",function(){ alert('提示'); }); 上面代码,怎么 ...

  4. node.remove()

    node.remove()方法是在DOM 4规范中实现的,由于糟糕的浏览器支持,不建议使用.应该使用removeChild方法,但是该方法必须要清楚父元素,通常的做法是:node.parentNode ...

  5. 常用 PostgreSQL 脚本

    数据定义 数据库 -- 创建数据库 -- https://www.postgresql.org/docs/current/static/multibyte.html -- database_name, ...

  6. 应用场景不同,是无代码和低代码的最大区别 ZT

    随着媒体对低代码.无代码等先进技术的持续关注,我们发现大多数人都听说过低代码开发和无代码开发这两个概念,但是对两者之间的区别其实并不清楚.事实上,低代码开发和无代码开发之间存在着很多非常显著的差异,如 ...

  7. java 开发中 dom4j的简单用法

    Java中处理XML的方式有很多种,个人任务dom4j还是比较好用的.下面介绍以下简单的使用方法 先把import补充上 import org.dom4j.Document; import org.d ...

  8. ClrFromCSharp_2_2_生成部署打包应用程序

    1,在\reps\CSharpFromCSarp\CSharpFromCSarp_2_2,建立新解决方案和解决项目 并且输入以下代码 namespace ClrFromCSharp_2_2 { cla ...

  9. day 8 函数编程_byets

    定义 bytes类型是指一堆字节的集合,在python中以b开头的字符串都是bytes类型 b'\xe5\xb0\x8f\xe7\x8c\xbf\xe5\x9c\x88' #b开头的都代表是bytes ...

  10. SpringBoot整合NoSql--(一)Redis

    简介: Redis是一个开源的使用ANSI C语言编写.遵守BSD协议.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.它通常被称为数据结构服务器,因为值(v ...