题意:f为Fibnacci数列。求$\prod_{1<=i<=n,1<=j<=m} f[gcd(i,j)]$.

n,m<=1e6.

标程:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+;
const int N=1e6+;
int f[N],prime[N],tot,F[N],ans,p[N],n,m,nxt,u[N],fi[N];
int ksm(int x,int y)
{
int res=;
for (;y;x=(ll)x*x%mod,y>>=)
if (y&) res=(ll)res*x%mod;
return res;
}
void pre()
{
f[]=f[]=fi[]=fi[]=;
for (int i=;i<N;i++) f[i]=((ll)f[i-]+f[i-])%mod,fi[i]=ksm(f[i],mod-);
u[]=;
for (int i=;i<N;i++)
{
if (!p[i]) prime[++tot]=i,u[i]=-;//质数的u是-1!
for (int j=;j<=tot&&(ll)prime[j]*i<N;j++)
{
p[prime[j]*i]=;
if (i%prime[j]==) break;
u[prime[j]*i]=-u[i];
}
}
for (int i=;i<N;i++) F[i]=;
for (int i=;i<N;i++)
if (u[i]!=)
for (int j=i;j<N;j+=i)
F[j]=(ll)F[j]*(u[i]==?f[j/i]:fi[j/i])%mod;//注意u有可能是-1
for (int i=;i<N;i++) F[i]=(ll)F[i]*F[i-]%mod;
}
int main()
{
pre();int T;
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&n,&m);ans=;
for (int i=;i<=min(n,m);i=nxt+)
{
nxt=min(n/(n/i),m/(m/i));
ans=(ll)ans*ksm((ll)F[nxt]*ksm(F[i-],mod-)%mod,(ll)(n/i)*(m/i)%(mod-))%mod;
}
printf("%d\n",ans);
}
return ;
}

注意点:质数的u是-1!不要忘记。

题解:mobius反演

看到gcd就可以提出来,$Ans=\prod_{d=1}^{min(n,m)} f[d]^{\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[\gcd(i,j)=1]}$

指数上的是mobius经典题,用$\mu$函数反演以下,得到$Ans=\prod_{d=1}^{min(n,m)} f[d]^{\sum_k\lfloor\frac{n}{dk}\rfloor\lfloor\frac{m}{dk}\rfloor\mu(k)}$。

令u=kd,$Ans=\prod_u(\prod_{k|u}f[\frac{u}{k}]^{\mu(k)})^{\lfloor\frac{n}{u}\rfloor\lfloor\frac{m}{u}\rfloor}$。分块即可。

预处理中间那部分东西的前缀积。

loj2000[SDOI2017]数字表格的更多相关文章

  1. BZOJ:4816: [Sdoi2017]数字表格

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 501  Solved: 222[Submit][Status ...

  2. [Sdoi2017]数字表格 [莫比乌斯反演]

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  3. 【BZOJ 4816】 4816: [Sdoi2017]数字表格 (莫比乌斯)

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 666  Solved: 312 Description Do ...

  4. P3704 [SDOI2017]数字表格

    P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...

  5. [SDOI2017]数字表格 --- 套路反演

    [SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...

  6. 题解-[SDOI2017]数字表格

    题解-[SDOI2017]数字表格 前置知识: 莫比乌斯反演</> [SDOI2017]数字表格 \(T\) 组测试数据,\(f_i\) 表示 \(\texttt{Fibonacci}\) ...

  7. [SDOI2017]数字表格 & [MtOI2019]幽灵乐团

    P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d ...

  8. 并不对劲的bzoj4816:loj2000:p3704[SDOI2017]数字表格

    题目大意 有函数\(f(x)\),\(f(0)=0,f(1)=1,f(x)=f(x-1)+f(x-2)\) \(t\)(\(t\leq1000\))组询问,每次给定\(n,m\)(\(n,m\leq1 ...

  9. bzoj4816 [Sdoi2017]数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

随机推荐

  1. imagepicker插件的使用方法和选择按钮汉化

    1,使用cordova-plugin-image-picker插件. cordova plugin add https://github.com/wymsee/cordova-imagePicker. ...

  2. tcp - 传输控制协议 (TCP)

    总缆 SYNOPSIS #include <sys/socket.h> #include <netinet/in.h> tcp_socket = socket(PF_INET, ...

  3. spark on yarn提交任务时报ClosedChannelException解决方案

    spark2.1出来了,想玩玩就搭了个原生的apache集群,但在standalone模式下没有任何问题,基于apache hadoop 2.7.3使用spark on yarn一直报这个错.(Jav ...

  4. cf期望概率专题

    cf1009E:求到第i段期望和的比较困难,但是单独求每段的期望是比较容易的,所以单独对每段求和,然后累计总和 E[i]=1/2*a1+1/4*a2+...+1/2^(i-1)*ai-1+1/2^(i ...

  5. 基于aop的日志记录方式实现

    说明 最近有个项目需要增加日志记录功能,因为这个项目原来是基于spring开发的,在查阅了相关资料以后,我采用了spring aop的方式实现该需求,然后就有了本篇文章. 思路 我这边需求是这样的:要 ...

  6. delphi 调用js脚本

    function ExecScript(Code,Lang,Func:string):string; var script:OleVariant; begin script:=CreateOleObj ...

  7. 用 Windows Live Writer 和 SyntaxHighlighter 插件写高亮代码

    博客园内置支持SyntaxHighlighter代码着色,代码着色语法:<pre class='brush:编程语言'>代码</pre>. 需要注意的是:如何你使用Syntax ...

  8. 51nod 1437 迈克步——单调栈

    有n只熊.他们站成一排队伍,从左到右依次1到n编号.第i只熊的高度是ai. 一组熊指的队伍中连续的一个子段.组的大小就是熊的数目.而组的力量就是这一组熊中最小的高度. 迈克想知道对于所有的组大小为x( ...

  9. php开发面试题---1、php常用面试题一(PHP有哪些特性)

    php开发面试题---1.php常用面试题一(PHP有哪些特性) 一.总结 一句话总结: ①.混合语法:php独特混合了C,Java,Prel以及PHP自创的语法. ②.为动态网页而生:可以比CGI或 ...

  10. cgo 和 Go 语言是两码事

    cgo不是Go 借用 JWZ的一句话 有些人,当他们面临一个问题时,认为“我知道,我会使用 cgo ”.那么现在,他们有了两个问题. 最近有人在 Gopher 的 Slack Channel 上使用 ...