Description###

HH有个一成不变的习惯,喜欢饭后百步走。所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离。 但

是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回。 又因为HH是个喜欢变化的人,所以他每

天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法。 现在给你学校的地图(假设每条路的长度都

是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径

Input###

第一行:五个整数N,M,t,A,B。

N表示学校里的路口的个数

M表示学校里的 路的条数

t表示HH想要散步的距离

A表示散步的出发点

B则表示散步的终点。

接下来M行

每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路。

数据保证Ai != Bi,但不保证任意两个路口之间至多只有一条路相连接。

路口编号从0到N -1。

同一行内所有数据均由一个空格隔开,行首行尾没有多余空格。没有多余空行。

答案模45989。

N ≤ 20,M ≤ 60,t ≤ 2^30,0 ≤ A,B

Output###

一行,表示答案。

Sample Input###

4 5 3 0 0

0 1

0 2

0 3

2 1

3 2

Sample Output###

4


想法##

数据范围提示我用矩阵乘法。

其中每个点表示一条路而不是一个点。

然后好像没什么可说的了。。。。


代码##

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring> #define P 45989 using namespace std; typedef long long ll;
const int SZ = 140; int n,m;
struct matrix{
ll a[SZ][SZ];
matrix() { memset(a,0,sizeof(a)); }
void init() { for(int i=0;i<SZ;i++) a[i][i]=1; }
matrix operator * (const matrix &b) const{
matrix c;
for(int i=0;i<m;i++)
for(int j=0;j<m;j++)
for(int k=0;k<m;k++)
(c.a[i][j]+=a[i][k]*b.a[k][j])%=P;
return c;
}
matrix operator *= (const matrix &b) { return *this=*this*b; }
};
matrix Pow_mod(matrix x,ll y){
matrix ret; ret.init();
while(y){
if(y&1) ret*=x;
x*=x;
y>>=1;
}
return ret;
} struct edge{
int fr,to;
}e[140]; int A,B;
ll t; int main()
{
int u,v;
scanf("%d%d%lld%d%d",&n,&m,&t,&A,&B);
for(int i=0;i<m;i++){
scanf("%d%d",&u,&v);
e[i*2].fr=u; e[i*2].to=v;
e[i*2+1].fr=v; e[i*2+1].to=u;
}
m*=2; matrix a,b;
for(int i=0;i<m;i++)
if(e[i].fr==A) b.a[0][i]=1;
for(int i=0;i<m;i++)
for(int j=0;j<m;j++)
if(e[i].to==e[j].fr){
if(i/2==j/2) continue;
a.a[i][j]=1;
}
a=Pow_mod(a,t-1);
b=b*a; ll ans=0;
for(int i=0;i<m;i++)
if(e[i].to==B)
(ans+=b.a[0][i])%=P;
printf("%lld\n",ans); return 0;
}

[bzoj1875] [洛谷P2151] [SDOI2009] HH去散步的更多相关文章

  1. 洛谷P2151 [SDOI2009] HH去散步 [矩阵加速]

    题目传送门 HH去散步 题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走 ...

  2. 洛谷 P2151 [SDOI2009]HH去散步

    题目链接 思路 如果没有不能走上一条边的限制,很显然就是dp. 设f[i][j]表示到达i点走了j步的方案数,移到k点可以表示为f[k][j+1]+=f[i][j]. 如果有限制的话,可以考虑用边表示 ...

  3. 洛谷2151[SDOI2009]HH去散步(dp+矩阵乘法优化)

    一道良好的矩阵乘法优化\(dp\)的题. 首先,一个比较\(naive\)的想法. 我们定义\(dp[i][j]\)表示已经走了\(i\)步,当前在点\(j\)的方案数. 由于题目中限制了不能立即走之 ...

  4. 「 洛谷 」P2151 [SDOI2009]HH去散步

    小兔的话 欢迎大家在评论区留言哦~ HH去散步 题目限制 内存限制:125.00MB 时间限制:1.00s 标准输入 标准输出 题目知识点 动态规划 \(dp\) 矩阵 矩阵乘法 矩阵加速 矩阵快速幂 ...

  5. P2151 [SDOI2009]HH去散步

    题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢 ...

  6. Luogu P2151 [SDOI2009]HH去散步 矩乘加速DP

    思路:矩乘优化DP 提交:3次(用了一个奇怪的东西导致常数过大) 题解: 如果可以走完正向边后又走反向边那就显然了,但是不能走,所以我们要将正反向边分别编号,区分正反向边. 所以这道题的矩阵是以边的编 ...

  7. AC日记——[SDOI2009]HH去散步 洛谷 P2151

    [SDOI2009]HH去散步 思路: 矩阵快速幂递推(类似弗洛伊德): 给大佬跪烂-- 代码: #include <bits/stdc++.h> using namespace std; ...

  8. bzoj1875: [SDOI2009]HH去散步

    终于A了...早上按自己以前的写法一直WA.下午换了一种写法就A了qwq #include<cstdio> #include<cstring> #include<iost ...

  9. BZOJ 1875: [SDOI2009]HH去散步( dp + 矩阵快速幂 )

    把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 ------------------------------------------------------------------ ...

随机推荐

  1. linux 内核定时器的实现

    为了使用它们, 尽管你不会需要知道内核定时器如何实现, 这个实现是有趣的, 并且值得 看一下它们的内部. 定时器的实现被设计来符合下列要求和假设: 定时器管理必须尽可能简化. 设计应当随着激活的定时器 ...

  2. CodeForces 1096D(线性dp)

    传送门 •题意 给出一个长度为n的字符串s,对于每个$s_{i}$有$a_{i}$的价值 让你删除最小的价值,使得字符串中不存在$hard$这个子序列 •思路 设dp[1]是不存在以$h$为前缀的最小 ...

  3. mysql中information_schema.schemata字段说明

    1. 获取所有数据库信息(SCHEMATA) show databases; 查看用户下所有数据库信息:SCHEMATA表:提供了关于数据库中的库的信息.详细表述了某个库的名称,默认编码,排序规则.各 ...

  4. DOCKER学习_005:Flannel网络配置

    一 简介 Flannel是一种基于overlay网络的跨主机容器网络解决方案,也就是将TCP数据包封装在另一种网络包里面进行路由转发和通信, Flannel是CoreOS开发,专门用于docker多机 ...

  5. 洛谷$P2486\ [SDOI2011]$染色 线段树+树链剖分

    正解:线段树+树链剖分 解题报告: 传送门$QwQ$ 其实是道蛮板子的题,,,但因为我写得很呆然后写了贼久之后发现想法有问题要重构,就很难受,就先写个题解算了$kk$ 考虑先跑个树剖,然后按$dfn$ ...

  6. openlayers中实现点的拖拽(modify),在layer中增加修改删除point。

    最近忙着整地图,都忘记了总结来沉淀自己,自我检讨一下. 总结一下最近使用openlayer时学习的内容,先说下我的业务逻辑吧,在室内地图中 1,点击新增在地图上新增一个可以拖拽的点,拖拽完成后确定位置 ...

  7. 「Luogu P3183」[HAOI2016]食物链 解题报告

    身为一个蒟蒻,由于刷不过[NOI2001]食物链 于是出门左转写了道另一道假的食物链 戳这里 这里的食物链个条数其实就是有向图的路径数(应该是这么说吧,我弱) 思路: 拓扑(Topulogy)(一本正 ...

  8. 谁再问elasticsearch集群Red怎么办?把这篇笔记给他

    前言 可能你经历过这些Red. ...等等 那ES的Red是神么意思? 这里说的red,是指es集群的状态,一共有三种,green.red.yellow.具体含义: 冷静分析 从上图可知,集群red是 ...

  9. python文件及目录操作

    python文件及目录操作 读/写文件 新建/打开文件 写入 #举个例子,打开D:\test\data.txt #以写入模式打开文件 #如果test(上级目录)不存在则报错 #如果data.txt(文 ...

  10. Map and HashMap

    1.1.1. Map 接口 java提供了一组可以以键值对(key-value)的形式存储数据的数据结构,这种数据结构称为Map.我们可以把Map看成一个多行两列的表格,其中第一列存放key,第二列存 ...