代码仓库: https://github.com/brandonlyg/cute-dl

目标

        上阶段cute-dl已经可以构建基础的RNN模型。但对文本相模型的支持不够友好, 这个阶段的目标是, 让框架能够友好地支持文本分类和本文生成任务。具体包括:

  1. 添加嵌入层, 为文本寻找高效的向量表示。
  2. 添加类别抽样函数, 根据模型输出的类别分布抽样得到生成的文本。
  3. 使用imdb-review数据集验证文本分类模型。
  4. 使用一个古诗数据集验证文本生成模型。

        这阶段涉及到的代码比较简单因此接下来会重点描述RNN语言相关模型中涉及到的数学原理和工程方法。

数学原理

文本分类模型

        可以把文本看成是一个词的序列\(W=[w_1, w_2, ..., w_T]\), 在训练数据集中每个文本属于一个类别\(a_i\), \(a_i∈A\), 集合 \(A = \{ a_1, a_2, ..., a_k \}\) 是一个类别别集合. 分类模型要做的是给定一个文本W, 计算所有类别的后验概率:

\[P(a_i|W) = P(a_i|w_1,w_2,...,w_T), \quad i=1,2,...k
\]

        那么文本序列W的类别为:

\[a = arg \max_{a_i} P(a_i|w_1,w_2,...,w_T)
\]

        即在给定文本的条件下, 具有最大后验概率的类别就是文本序列W所属的类别.

文本预测模型

        设任意一个文本序列为\(W=[w_1,w_2,...,W_T]\), 任意一个词\(w_i ∈ V\), V是所有词汇的集合,也叫词汇表, 这里需要强调的是\(w_i\)在V中是无序的, 但在W中是有序的, 文本预测的任务是, 计算任意一个词\(w_i ∈ V\)在给定一个序列中的任意一个位置出现的概率:

\[P(w_1,...,W_T) = ∏_{t=1}^T P(w_t|w_1,...,w_{t-1})
\]

        文本预测输出一个\(w_i ∈ V\)的分布列, 根据这个分布列从V中抽取一个词即为预测结果。不同于分类任务,这里不是取概率最大的词, 这里的预测结果是某个词出现的在一个序列特定位置的个概率,只要概率不是0都有可能出现,所以要用抽样的方法确定某次预测的结果。

词的数字化表示

        任意一条数据在送入模型之前都要表示为一个数字化的向量, 文本数据也不例外。一个文本可以看成词的序列,因此只要把词数字化了,文本自然也就数字化了。对于词来说,最简单的方式是用词在词汇表中的唯一ID来表示, ID需要遵守两个最基本的规则:

  1. 每个词的ID在词汇表中必须是唯一的.
  2. 每个词的ID一旦确定不能变化.

        这种表示很难表达词之间的关系, 例如: 在词汇表中把"好"的ID指定为100, 如果希望ID能够反映词意的关系, 需要把"好"的近意词: "善", "美", "良", "可以"编码为98, 99, 101, 102. 目前为止这看起还行. 如果还希望ID能够反映词之间的语法关系, "好"前后经常出现的词: "友", "人", "的", 这几个词的ID就很难选择, 不论怎样, 都会发现两个词它们在语义和语法上的关系都很远,但ID却很接近。这也说明了标量的表达能力很有限,无法表达多个维度的关系。为了能够表达词之间多个维度的的关系,多维向量是一个很好的选择. 向量之间的夹大小衡量它们之间的关系:

\[cos(θ) = \frac{<A, B>}{|A||B|}
\]

        对于两个向量A, B使用它们的点积, 模的乘积就能得到夹角θ余弦值。当cos(θ)->1表示两个向量的相似度高, cos(θ)->0 表示两个向量是不相关的, cos(θ)->-1 表示两个向量是相反的。

        把词的ID转换成向量,最简单的办法是使用one-hot编码, 这样得到的向量有两个问题:

  1. 任意两个向量A,B, <A,B>=0, 夹角的余弦值cos(θ)=0, 不能表达词之间的关系.
  2. 向量的维度等于词汇表的大小, 而且是稀疏向量,这和导致模型有大量的参数,模型训练过程的运算量也很大.

        词嵌入技术就是为解决词表示的问题而提出的。词嵌入把词ID映射到一个合适维度的向量空间中, 在这个向量空间中为每个ID分配一个唯一的向量, 把这些向量当成参数看待, 在特定任务的模型中学习这些参数。当模型训练完成后, 这些向量就是词在这个特定任务中的一个合适的表示。词嵌入向量的训练步骤有:

  1. 收集训练数据集中的词汇, 构建词汇表。
  2. 为词汇表中的每个词分配一个唯一的ID。假设词汇表中的词汇量是N, 词ID的取值为:0,1,2,...,N-1, 对人任意一个0<ID<N-1, 必然存在ID-1, ID+1.
  3. 随机初始化N个D维嵌入向量, 向量的索引为0,1,2,...,N-1. 这样词ID就成了向量的索引.
  4. 定义一个模型, 把嵌入向量作为模型的输入层参与训练.
  5. 训练模型.

嵌入层实现

        代码: cutedl/rnn_layers.py, Embedding类.

        初始化嵌入向量, 嵌入向量使用(-1, 1)区间均匀分布的随机变量初始化:

'''
dims 嵌入向量维数
vocabulary_size 词汇表大小
need_train 是否需要训练嵌入向量
'''
def __init__(self, dims, vocabulary_size, need_train=True):
#初始化嵌入向量
initializer = self.weight_initializers['uniform']
self.__vecs = initializer((vocabulary_size, dims)) super().__init__() self.__params = None
if need_train:
self.__params = []
self.__cur_params = None
self.__in_batch = None

        初始化层参数时把所有的嵌入向量变成参与训练的参数:

def init_params(self):
if self.__params is None:
return voc_size, _ = self.__vecs.shape
for i in range(voc_size):
pname = 'weight_%d'%i
p = LayerParam(self.name, pname, self.__vecs[i])
self.__params.append(p)

        向前传播时, 把形状为(m, t)的数据转换成(m, t, n)形状的数据, 其中t是序列长度, n是嵌入向量的维数.

'''
in_batch shape=(m, T)
return shape (m, T, dims)
'''
def forward(self, in_batch, training):
m,T = in_batch.shape
outshape = (m, T, self.outshape[-1])
out = np.zeros(outshape) #得到每个序列的嵌入向量表示
for i in range(m):
out[i] = self.__vecs[in_batch[i]] if training and self.__params is not None:
self.__in_batch = in_batch return out

        反向传播时只关注当前批次使用到的向量, 注意同一个向量可能被多次使用, 需要累加同一个嵌入向量的梯度.

def backward(self, gradient):
if self.__params is None:
return #pdb.set_trace()
in_batch = self.__in_batch
params = {}
m, T, _ = gradient.shape
for i in range(m):
for t in range(T):
grad = gradient[i, t]
idx = self.__in_batch[i, t] #更新当前训练批次的梯度
if idx not in params:
#当前批次第一次发现该嵌入向量
params[idx] = self.__params[idx]
params[idx].gradient = grad
else:
#累加当前批次梯度
params[idx].gradient += grad self.__cur_params = list(params.values())

验证

imdb-review数据集上的分类模型

        代码: examples/rnn/text_classify.py.

        数据集下载地址: https://pan.baidu.com/s/13spS_Eac_j0uRvCVi7jaMw 密码: ou26

数据集处理

        数据集处理时有几个需要注意的地方:

  1. imdb-review数据集由长度不同的文本构成, 送入模型的数据形状为(m, t, n), 至少要求一个批次中的数据具有相同的序列长度, 因此在对数据进行分批时, 对数据按批次填充.
  2. 一般使用0为填充编码. 在构建词汇表时, 假设有v个词汇, 词汇的编码为1,2,...,v.
  3. 由于对文本进行分词, 编码比较耗时。可以把编码后的数据保存起来,作为数据集的预处理数据, 下次直接加载使用。

模型

def fit_gru():
print("fit gru")
model = Model([
rnn.Embedding(64, vocab_size+1),
wrapper.Bidirectional(rnn.GRU(64), rnn.GRU(64)),
nn.Filter(),
nn.Dense(64),
nn.Dropout(0.5),
nn.Dense(1, activation='linear')
])
model.assemble()
fit('gru', model)

        训练报告:



这个模型和tensorflow给出的模型略有差别, 少了一个RNN层wrapper.Bidirectional(rnn.GRU(32), rnn.GRU(32)), 这个模型经过16轮的训练达到了tensorflow模型的水平.

文本生成模型

        我自己收集了一个古由诗词构成的小型数据集, 用来验证文本生成模型. 代码: examples/rnn/text_gen.py.

        数据集下载地址: https://pan.baidu.com/s/14oY_wol0d9hE_9QK45IkzQ 密码: 5f3c

        模型定义:

def fit_gru():
vocab_size = vocab.size()
print("vocab size: ", vocab_size)
model = Model([
rnn.Embedding(256, vocab_size),
rnn.GRU(1024, stateful=True),
nn.Dense(1024),
nn.Dropout(0.5),
nn.Dense(vocab_size, activation='linear')
]) model.assemble()
fit("gru", model)

        训练报告:

        生成七言诗:

def gen_text():
mpath = model_path+"gru" model = Model.load(mpath)
print("loadding model finished")
outshape = (4, 7) print("vocab size: ", vocab.size()) def do_gen(txt):
#编码
#pdb.set_trace()
res = vocab.encode(sentence=txt) m, n = outshape for i in range(m*n - 1):
in_batch = np.array(res).reshape((1, -1))
preds = model.predict(in_batch)
#取最后一维的预测结果
preds = preds[:, -1]
outs = dlmath.categories_sample(preds, 1)
res.append(outs[0,0]) #pdb.set_trace()
txt = ""
for i in range(m):
txt = txt + ''.join(vocab.decode(res[i*n:(i+1)*n])) + "\n" return txt starts = ['云', '故', '画', '花']
for txt in starts:
model.reset()
res = do_gen(txt)
print(res)

        生成的文本:

云填缆首月悠觉
缆濯醉二隐隐白
湖杖雨遮双雨乡
焉秣都沧枫寓功 故民民时都人把
陈雨积存手菜破
好缆帘二龙藕却
趣晚城矣中村桐 画和春觉上盖骑
满楚事胜便京兵
肯霆唇恨朔上杨
志月随肯八焜著 花夜维他客陈月
客到夜狗和悲布
关欲掺似瓦阔灵
山商过墙滩幽惘

        是不是很像李商隐的风格?

自己动手实现深度学习框架-8 RNN文本分类和文本生成模型的更多相关文章

  1. 自己动手实现深度学习框架-7 RNN层--GRU, LSTM

    目标         这个阶段会给cute-dl添加循环层,使之能够支持RNN--循环神经网络. 具体目标包括: 添加激活函数sigmoid, tanh. 添加GRU(Gate Recurrent U ...

  2. 小白学习之pytorch框架(2)-动手学深度学习(begin-random.shuffle()、torch.index_select()、nn.Module、nn.Sequential())

    在这向大家推荐一本书-花书-动手学深度学习pytorch版,原书用的深度学习框架是MXNet,这个框架经过Gluon重新再封装,使用风格非常接近pytorch,但是由于pytorch越来越火,个人又比 ...

  3. [深度学习大讲堂]从NNVM看2016年深度学习框架发展趋势

    本文为微信公众号[深度学习大讲堂]特约稿,转载请注明出处 虚拟框架杀入 从发现问题到解决问题 半年前的这时候,暑假,我在SIAT MMLAB实习. 看着同事一会儿跑Torch,一会儿跑MXNet,一会 ...

  4. 贾扬清分享_深度学习框架caffe

    Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 ...

  5. TensorFlow与主流深度学习框架对比

    引言:AlphaGo在2017年年初化身Master,在弈城和野狐等平台上横扫中日韩围棋高手,取得60连胜,未尝败绩.AlphaGo背后神秘的推动力就是TensorFlow--Google于2015年 ...

  6. ArXiv最受欢迎开源深度学习框架榜单:TensorFlow第一,PyTorch第四

    [导读]Kears作者François Chollet刚刚在Twitter贴出最近三个月在arXiv提到的深度学习框架,TensorFlow不出意外排名第一,Keras排名第二.随后是Caffe.Py ...

  7. Reading | 《TensorFlow:实战Google深度学习框架》

    目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使 ...

  8. tensorflow(深度学习框架)详细讲解及实战

    还未完全写完,本人会一直持续更新!~ 各大深度学习框架总结和比较 各个开源框架在GitHub上的数据统计,如下表: 主流深度学习框架在各个维度的评分,如下表: Caffe可能是第一个主流的工业级深度学 ...

  9. 截图:【炼数成金】深度学习框架Tensorflow学习与应用

    创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络   MINIST数据集分类器简单版 ...

随机推荐

  1. tableView的嵌套

    1,subTableView需要开启多手势识别,多层tableView都会响应滚动事件(如果底层是scroll 依然会响应,这样滚动tableview时,scroll也会滚动,导致滚动过于灵活)2,通 ...

  2. 转义URL 含有中文和特殊符号

    方法1: //这个方法被废弃了 NSString *urlString = @"https://www.cnblogs.com/huaida/#/程序员"; NSString* e ...

  3. 将BeyondCompare设置为TortoiseSVN的扩展比较工具

    1)点击鼠标右键 -> 点击TortoiseSVN -> Settings,如下图: 2)选择Diff Viewer - > 选择External(并配置好参数),具体如下图: 3) ...

  4. Java-main方法中调用非static方法

    java的calss中,在public static void main(String[] args) { }方法中调用非static的方法:在main方法中创建该calss的对象,用对象调用非sta ...

  5. 你还不懂 Tomcat 的优化吗?

    前言 Tomcat 服务器是一个开源的轻量级Web应用服务器,在中小型系统和并发量小的场合下被普遍使用,是开发和调试Servlet.JSP 程序的首选.相信大家对于 Tomcat 已经是非常熟悉了,本 ...

  6. IDEA奇淫小技巧

    IDEA是目前市场上最好用的IDE,我说的! 前几年eclipse在市场上非常流行,因此大多数人都习惯了eclipse的一些快捷键.近年来,随着IDEA的兴起,很多人都放弃了exlipse,进而选择了 ...

  7. go模板-代码生成器

    能用程序去做的事,就不要用手,编写自己的代码生成器就是用来解放你的双手,替你做一些重复性的工作. 上篇帖子写了模板的基础 go模板详说 ,有了基础就要做点什么东西,把所学到的东西应用起来才能更好的进步 ...

  8. 在 Linux 系统中如何管理 systemd 服务

    在上一篇文章<Linux的运行等级与目标>中,我介绍过 Linux 用 systemd 来取代 init 作为系统的初始化进程.尽管这一改变引来了很多争议,但大多数发行版,包括 RedHa ...

  9. 2020年,为什么我们应该使用abapGit代替SAPLink

    SAPLink是一个帮助人们分享开发内容的工具.通过它,人们可以将ABAP开发对象从一个系统打包下载.再上传到另一个系统中.对于各种类型的开发者,它都可以起到作用: 有的开发者喜欢在不同的项目中复制相 ...

  10. JavaSE(一) 语言概述

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 目录 1 基础常识 2 Java语言版本迭代概述 3 Java语言应用的领域 4 Java语言的特点 5 ...