1084: [SCOI2005]最大子矩阵

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2796  Solved: 1391
[Submit][Status][Discuss]

Description

  这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵
不能相互重叠。

Input

  第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的
分值的绝对值不超过32767)。

Output

  只有一行为k个子矩阵分值之和最大为多少。

Sample Input

3 2 2
1 -3
2 3
-2 3

Sample Output

9
 
 
题解感觉是按最多K个做的并且过了。。那题目就当成是最多K个吧
 
 
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int f[111][111][11],dp[111][11];
int x1,x2;
int sum1[111],sum2[111];
int main()
{
    int n,m,K;
    scanf("%d%d%d",&n,&m,&K);
    if(m==1)
    {
        for(int i=1; i<=n; ++i)
        {
            scanf("%d",&x1);
            sum1[i]=sum1[i-1]+x1;
        }
        for(int i=1; i<=n; ++i)
        {
            for(int k=1; k<=K; ++k)
            {
                dp[i][k]=dp[i-1][k];
                for(int j=0; j<i; ++j)
                    dp[i][k]=max(dp[i][k],dp[j][k-1]+sum1[i]-sum1[j]);
            }
        }
        printf("%d\n",dp[n][K]);
    }
    else
    {
        for(int i=1; i<=n; ++i)
        {
            scanf("%d%d",&x1,&x2);
            sum1[i]=sum1[i-1]+x1;
            sum2[i]=sum2[i-1]+x2;
        }
        for(int k=1; k<=K; ++k)
        {
            for(int i=1; i<=n; ++i)
            {
                for(int j=1; j<=n; ++j)
                {
                    f[i][j][k]=max(f[i-1][j][k],f[i][j-1][k]);
                    for(int l=0; l<i; ++l)
                        f[i][j][k]=max(f[i][j][k],f[l][j][k-1]+sum1[i]-sum1[l]);
                    for(int l=0; l<j; ++l)
                        f[i][j][k]=max(f[i][j][k],f[i][l][k-1]+sum2[j]-sum2[l]);
                    if(i==j)
                        for(int l=0; l<i; ++l)
                            f[i][j][k]=max(f[i][j][k],f[l][l][k-1]+sum1[i]-sum1[l]+sum2[j]-sum2[l]);
                }
            }
        }
        printf("%d\n",f[n][n][K]);
    }
}

BZOJ 1084DP的更多相关文章

  1. BZOJ 2127: happiness [最小割]

    2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1815  Solved: 878[Submit][Status][Di ...

  2. BZOJ 3275: Number

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 874  Solved: 371[Submit][Status][Discus ...

  3. BZOJ 2879: [Noi2012]美食节

    2879: [Noi2012]美食节 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1834  Solved: 969[Submit][Status] ...

  4. bzoj 4610 Ceiling Functi

    bzoj 4610 Ceiling Functi Description bzoj上的描述有问题 给出\(n\)个长度为\(k\)的数列,将每个数列构成一个二叉搜索树,问有多少颗形态不同的树. Inp ...

  5. BZOJ 题目整理

    bzoj 500题纪念 总结一发题目吧,挑几道题整理一下,(方便拖板子) 1039:每条线段与前一条线段之间的长度的比例和夹角不会因平移.旋转.放缩而改变,所以将每条轨迹改为比例和夹角的序列,复制一份 ...

  6. 【sdoi2013】森林 BZOJ 3123

    Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数.第三行包含N个非负整数 ...

  7. 【清华集训】楼房重建 BZOJ 2957

    Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...

  8. 【splay】文艺平衡树 BZOJ 3223

    Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3  ...

  9. bzoj 刷水

    bzoj 3856: Monster 虽然是sb题,,但是要注意h可能<=a,,,开始忘记判了WA得很开心. #include <iostream> #include <cst ...

随机推荐

  1. Vue Router路由守卫妙用:异步获取数据成功后再进行路由跳转并传递数据,失败则不进行跳转

    问题引入 试想这样一个业务场景: 在用户输入数据,点击提交按钮后,这时发起了ajax请求,如果请求成功, 则跳转到详情页面并展示详情数据,失败则不跳转到详情页面,只是在当前页面给出错误消息. 难点所在 ...

  2. POJ2155/LNSYOJ113 Matrix【二维树状数组+差分】【做题报告】

    这道题是一个二维树状数组,思路十分神奇,其实还是挺水的 题目描述 给定一个N∗NN∗N的矩阵AA,其中矩阵中的元素只有0或者1,其中A[i,j]A[i,j]表示矩阵的第i行和第j列(1≤i,j≤N)( ...

  3. 数学--数论--HDU-2698 Maximum Multiple(规律)

    Given an integer nn, Chiaki would like to find three positive integers xx, yy and zzsuch that: n=x+y ...

  4. DAG的深度优先搜索标记

    这是图论的基础知识点,也是学习Tarjan的导学课. 一.知识 对于在图G上进行深度优先搜索算法所产生的深度优先森林Gt,我们可以定义四种边的类型: 1.树边(Tree Edge):为深度优先森林中G ...

  5. 洛谷 2016 战略游戏(树形DP)

    题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能 ...

  6. RF(For 循环)

    一.介绍:RobotFrameWork 支持 FOR 循环语句,语法和 Python 的语法基本相同,但 RobotFrameWork 中,"FOR" 关键字前面需要增加一个 &q ...

  7. ubuntu 使用 vsftpd 基于系统用户配置相互隔离的 ftp (ftps) 服务

    我们在日常使用 UbuntuServer 服务器时,经常会直接使用基于 ssh 的  sftp 连接服务器直接进行文件上传和下载,不过这个方式其实有一定的安全隐患,当一个团队有多个人员,需要连接服务器 ...

  8. Pandas切片操作:很容易忽视的SettingWithCopyWarning

    Pandas是一个强大的分析结构化数据的工具集,主要用于数据挖掘和数据分析,同时也提供数据清洗功能. 很多初学者在数据的选取,修改和切片时经常面临一些困惑.这是因为Pandas提供了太多方法可以做同样 ...

  9. 前端【JS】,深拷贝与浅拷贝的区别及详解!

    我是前端小白一枚,为了巩固知识和增强记忆,开始整理相关的知识,方便以后复习和面试的时候看看.OK,让我们进入正题~ 先说说浅拷贝和深拷贝的理解吧,个人是这样理解的:两个对象A.B, A有数据B为空,B ...

  10. python语法学习第十一天--模块

    容器----------->数据的封装 函数----------->语句的封装 类-------------->方法和属性的封装 模块----------->程序本身  导入: ...