前言

  • Read the fucking source code! --By 鲁迅
  • A picture is worth a thousand words. --By 高尔基

1. 概述

Linux系统在访问设备的时候,存在以下几种IO模型:

  1. Blocking IO Model,阻塞IO模型
  2. Nonblocking I/O Model,非阻塞IO模型
  3. I/O Multiplexing Model,IO多路复用模型;
  4. Signal Driven I/O Model,信号驱动IO模型
  5. Asynchronous I/O Model,异步IO模型

今天我们来分析下IO多路复用机制,在Linux中是通过select/poll/epoll机制来实现的。

先看一下阻塞IO模型与非阻塞IO模型的特点:

  • 阻塞IO模型:在IO访问的时候,如果条件没有满足,会将当前任务切换出去,等到条件满足时再切换回来。

    • 缺点:阻塞IO操作,会让处于同一个线程的执行逻辑都在阻塞期间无法执行,这往往意味着需要创建单独的线程来交互。
  • 非阻塞IO模型:在IO访问的时候,如果条件没有满足,直接返回,不会block该任务的后续操作。
    • 缺点:非阻塞IO需要用户一直轮询操作,轮询可能会来带CPU的占用问题。

对单个设备IO操作时,问题并不严重,如果有多个设备呢?比如,在服务器中,监听多个Client的收发处理,这时候IO多路复用就显得尤为重要了,来张图:

如果这个图,让你有点迷惑,那就像个男人一样,man一下select/poll函数吧:

  • select:

  • poll

简单来说,select/poll能监听多个设备的文件描述符,只要有任何一个设备满足条件,select/poll就会返回,否则将进行睡眠等待。

看起来,select/poll像是一个管家了,统一负责来监听处理了。

已经迫不及待来看看原理了,由于底层的机制大体差不多,我将选择select来做进一步分析。

2. 原理

2.1 select系统调用

select的系统调用开始:

  • select系统调用,最终的核心逻辑是在do_select函数中处理的,参考fs/select.c文件;
  • do_select函数中,有几个关键的操作:
    1. 初始化poll_wqueues结构,包括几个关键函数指针的初始化,用于驱动中进行回调处理;
    2. 循环遍历监测的文件描述符,并且调用f_op->poll()函数,如果有监测条件满足,则会跳出循环;
    3. 在监测的文件描述符都不满足条件时,poll_schedule_timeout让当前进程进行睡眠,超时唤醒,或者被所属的等待队列唤醒;
  • do_select函数的循环退出条件有三个:
    1. 检测的文件描述符满足条件;
    2. 超时;
    3. 有信号要处理;
  • 在设备驱动程序中实现的poll()函数,会在do_select()中被调用,而驱动中的poll()函数,需要调用poll_wait()函数,poll_wait函数本身很简单,就是去回调函数p->_qproc(),这个回调函数正是poll_initwait()函数中初始化的__pollwait()

所以,来看看__pollwait()函数喽。

2.2 __pollwait

  • 驱动中的poll_wait函数回调__pollwait,这个函数完成的工作是向struct poll_wqueue结构中添加一条poll_table_entry
  • poll_table_entry中包含了等待队列的相关数据结构;
  • 对等待队列的相关数据结构进行初始化,包括设置等待队列唤醒时的回调函数指针,设置成pollwake
  • 将任务添加到驱动程序中的等待队列中,最终驱动可以通过wake_up_interruptile等接口来唤醒处理;

这一顿操作,其实就是驱动向select维护的struct poll_wqueue中注册,并将调用select的任务添加到驱动的等待队列中,以便在合适的时机进行唤醒。所以,本质上来说,这是基于等待队列的机制来实现的。

是不是还有点抽象,来看看数据结构的组织关系吧。

2.3 数据结构关系

  • 调用select系统调用的进程/线程,会维护一个struct poll_wqueues结构,其中两个关键字段:

    1. pll_table:该结构体中的函数指针_qproc指向__pollwait函数;
    2. struct poll_table_entry[]:存放不同设备的poll_table_entry,这些条目的增加是在驱动调用poll_wait->__pollwait()时进行初始化并完成添加的;

2.4 驱动编写启示

如果驱动中要支持select的接口调用,那么需要做哪些事情呢?

如果理解了上文中的内容,你会毫不犹豫的大声说出以下几条:

  1. 定义一个等待队列头wait_queue_head_t,用于收留等待队列任务;
  2. struct file_operations结构体中的poll函数需要实现,比如xxx_poll()
  3. xxx_poll()函数中,当然不要忘了poll_wait函数的调用了,此外,该函数的返回值mask需要注意是在条件满足时对应的值,比如EPOLLIN/EPOLL/EPOLLERR等,这个返回值是在do_select()函数中会去判断处理的;
  4. 条件满足的时候,wake_up_interruptible唤醒任务,当然也可以使用wake_up,区别是:wake_up_interruptible只能唤醒处于TASK_INTERRUPTIBLE状态的任务,而wake_up能唤醒处于TASK_INTERRUPTIBLETASK_UNINTERRUPTIBLE状态的任务;

2.5 select/poll的差异

  • selectpoll本质上基本类似,其中select是由BSD UNIX引入,pollSystemV引入;
  • selectpoll需要轮询文件描述符集合,并在用户态和内核态之间进行拷贝,在文件描述符很多的情况下开销会比较大,select默认支持的文件描述符数量是1024;
  • Linux提供了epoll机制,改进了selectpoll在效率与资源上的缺点,未深入了解;

3. 示例代码

3.1 内核驱动

示例代码中的逻辑:

  1. 驱动维护一个count值,当count值大于0时,表明条件满足,poll返回正常的mask值;
  2. poll函数每执行一次,count值就减去一次;
  3. count的值可以由用户通过ioctl来进行设置;
#include <linux/init.h>
#include <linux/module.h>
#include <linux/poll.h>
#include <linux/wait.h>
#include <linux/cdev.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <asm/ioctl.h> #define POLL_DEV_NAME "poll" #define POLL_MAGIC 'P'
#define POLL_SET_COUNT (_IOW(POLL_MAGIC, 0, unsigned int)) struct poll_dev {
struct cdev cdev;
struct class *class;
struct device *device; wait_queue_head_t wq_head; struct mutex poll_mutex;
unsigned int count; dev_t devno;
}; struct poll_dev *g_poll_dev = NULL; static int poll_open(struct inode *inode, struct file *filp)
{
filp->private_data = g_poll_dev; return 0;
} static int poll_close(struct inode *inode, struct file *filp)
{
return 0;
} static unsigned int poll_poll(struct file *filp, struct poll_table_struct *wait)
{
unsigned int mask = 0;
struct poll_dev *dev = filp->private_data; mutex_lock(&dev->poll_mutex); poll_wait(filp, &dev->wq_head, wait); if (dev->count > 0) {
mask |= POLLIN | POLLRDNORM; /* decrease each time */
dev->count--;
}
mutex_unlock(&dev->poll_mutex); return mask;
} static long poll_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
struct poll_dev *dev = filp->private_data;
unsigned int cnt; switch (cmd) {
case POLL_SET_COUNT:
mutex_lock(&dev->poll_mutex);
if (copy_from_user(&cnt, (void __user *)arg, _IOC_SIZE(cmd))) {
pr_err("copy_from_user fail:%d\n", __LINE__);
return -EFAULT;
} if (dev->count == 0) {
wake_up_interruptible(&dev->wq_head);
} /* update count */
dev->count += cnt; mutex_unlock(&dev->poll_mutex);
break;
default:
return -EINVAL;
} return 0;
} static struct file_operations poll_fops = {
.owner = THIS_MODULE,
.open = poll_open,
.release = poll_close,
.poll = poll_poll,
.unlocked_ioctl = poll_ioctl,
.compat_ioctl = poll_ioctl,
}; static int __init poll_init(void)
{
int ret; if (g_poll_dev == NULL) {
g_poll_dev = (struct poll_dev *)kzalloc(sizeof(struct poll_dev), GFP_KERNEL);
if (g_poll_dev == NULL) {
pr_err("struct poll_dev allocate fail\n");
return -1;
}
} /* allocate device number */
ret = alloc_chrdev_region(&g_poll_dev->devno, 0, 1, POLL_DEV_NAME);
if (ret < 0) {
pr_err("alloc_chrdev_region fail:%d\n", ret);
goto alloc_chrdev_err;
} /* set char-device */
cdev_init(&g_poll_dev->cdev, &poll_fops);
g_poll_dev->cdev.owner = THIS_MODULE;
ret = cdev_add(&g_poll_dev->cdev, g_poll_dev->devno, 1);
if (ret < 0) {
pr_err("cdev_add fail:%d\n", ret);
goto cdev_add_err;
} /* create device */
g_poll_dev->class = class_create(THIS_MODULE, POLL_DEV_NAME);
if (IS_ERR(g_poll_dev->class)) {
pr_err("class_create fail\n");
goto class_create_err;
}
g_poll_dev->device = device_create(g_poll_dev->class, NULL,
g_poll_dev->devno, NULL, POLL_DEV_NAME);
if (IS_ERR(g_poll_dev->device)) {
pr_err("device_create fail\n");
goto device_create_err;
} mutex_init(&g_poll_dev->poll_mutex);
init_waitqueue_head(&g_poll_dev->wq_head); return 0; device_create_err:
class_destroy(g_poll_dev->class);
class_create_err:
cdev_del(&g_poll_dev->cdev);
cdev_add_err:
unregister_chrdev_region(g_poll_dev->devno, 1);
alloc_chrdev_err:
kfree(g_poll_dev);
g_poll_dev = NULL;
return -1;
} static void __exit poll_exit(void)
{
cdev_del(&g_poll_dev->cdev);
device_destroy(g_poll_dev->class, g_poll_dev->devno);
unregister_chrdev_region(g_poll_dev->devno, 1);
class_destroy(g_poll_dev->class); kfree(g_poll_dev);
g_poll_dev = NULL;
} module_init(poll_init);
module_exit(poll_exit); MODULE_DESCRIPTION("select/poll test");
MODULE_AUTHOR("LoyenWang");
MODULE_LICENSE("GPL");

3.2 测试代码

测试代码逻辑:

  1. 创建一个设值线程,用于每隔2秒来设置一次count值;
  2. 主线程调用select函数监听,当设值线程设置了count值后,select便会返回;
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <pthread.h>
#include <errno.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/time.h> static void *set_count_thread(void *arg)
{
int fd = *(int *)arg;
unsigned int count_value = 1;
int loop_cnt = 20;
int ret; while (loop_cnt--) {
ret = ioctl(fd, NOTIFY_SET_COUNT, &count_value);
if (ret < 0) {
printf("ioctl set count value fail:%s\n", strerror(errno));
return NULL;
} sleep(1);
} return NULL;
} int main(void)
{
int fd;
int ret;
pthread_t setcnt_tid;
int loop_cnt = 20; /* for select use */
fd_set rfds;
struct timeval tv; fd = open("/dev/poll", O_RDWR);
if (fd < 0) {
printf("/dev/poll open failed: %s\n", strerror(errno));
return -1;
} /* wait up to five seconds */
tv.tv_sec = 5;
tv.tv_usec = 0; ret = pthread_create(&setcnt_tid, NULL,
set_count_thread, &fd);
if (ret < 0) {
printf("set_count_thread create fail: %d\n", ret);
return -1;
} while (loop_cnt--) {
FD_ZERO(&rfds);
FD_SET(fd, &rfds); ret = select(fd + 1, &rfds, NULL, NULL, &tv);
//ret = select(fd + 1, &rfds, NULL, NULL, NULL);
if (ret == -1) {
perror("select()");
break;
}
else if (ret)
printf("Data is available now.\n");
else {
printf("No data within five seconds.\n");
}
} ret = pthread_join(setcnt_tid, NULL);
if (ret < 0) {
printf("set_count_thread join fail.\n");
return -1;
} close(fd); return 0;
}

【原创】Linux select/poll机制原理分析的更多相关文章

  1. Linux select/poll和epoll实现机制对比

    关于这个话题,网上已经介绍的比较多,这里只是以流程图形式做一个简单明了的对比,方便区分. 一.select/poll实现机制 特点: 1.select/poll每次都需要重复传递全部的监听fd进来,涉 ...

  2. 【转载】Select函数实现原理分析

    Select函数实现原理分析 <原文> select需要驱动程序的支持,驱动程序实现fops内的poll函数.select通过每个设备文件对应的poll函数提供的信息判断当前是否有资源可用 ...

  3. 阿里系产品Xposed Hook检测机制原理分析

    阿里系产品Xposed Hook检测机制原理分析 导语: 在逆向分析android App过程中,我们时常用的用的Java层hook框架就是Xposed Hook框架了.一些应用程序厂商为了保护自家a ...

  4. Linux之poll机制分析

    应用程序访问1个设备文件时可用阻塞/非阻塞方式.如果是使用阻塞方式,则直接调用open().read().write(),但是在驱动程序层会判断是否可读/可写,如果不可读/不可写,则将当前进程休眠,直 ...

  5. select/poll/epoll原理探究及总结

    select,poll,epoll都是IO多路复用的机制.I/O多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作.但select ...

  6. Redis 发布/订阅机制原理分析

    Redis 通过 PUBLISH. SUBSCRIBE 和 PSUBSCRIBE 等命令实现发布和订阅功能.   这些命令被广泛用于构建即时通信应用,比如网络聊天室(chatroom)和实时广播.实时 ...

  7. ScrollView嵌套ListView,ListView完全展开及makeMeasureSpec测量机制原理分析

    在实际应用中,经常会碰到非常规的布局要求,比如说在ScrollView里嵌套ListView,ScrollView和ListView都是可以滚动的控件,这样布局看似很奇怪,但是有些效果又不得不这样做. ...

  8. Linux身份鉴别机制原理

    传统的UNIX身份鉴别机制原理 传统的UNIX身份鉴别即口令认证方式,它主要通过识别用户的用户名或者UID号获取在/etc/shadow中存放的对应用户密码密文等信息,然后获取用户输入密码并采用cry ...

  9. linux select poll and epoll

    这里以socket文件来阐述它们之间的区别,假设现在服务器端有100 000个连接,即已经创建了100 000个socket. 1 select和poll 在我们的线程中,我们会弄一个死循环,在循环里 ...

随机推荐

  1. k8s环境部署本地.net core web项目

    上一篇文章,我们部署了docker+k8s环境,简单测试通过,但是,还没能将我们自己的项目部署上去,继续记录部署踩坑过程. 一.准备工作 1.当然是docker+k8s环境了,详情请看上一篇文档 ht ...

  2. 某图片站反爬加密字段x-api-key破解

    前言 此次逆向的是某“你们都懂”领域的图片站,目前此站限制注册,非会员无法访问:前两天偶然搞到了份邀请码,进入后发现质量还可以,于是尝试爬取,在爬虫编写过程中发现此站点采用了不少手段来阻止自动化脚本( ...

  3. 攻防世界Mobile6 app1 XCTF详解

    XCTF_app1 先安装看看 点击芝麻开门之后会弹出“年轻人不要耍小聪明噢” 这大概就能看懂是点击之后进行判断,那就直接去看JEB,看看判断条件是什么 V1是输入的字符串,V2获取包信息(百度的), ...

  4. CSS+DIV自适应布局

    CSS+DIV自适应布局 1.两列布局(左右两侧,左侧固定宽度200px;右侧自适应占满) 代码如下: <!doctype html> <html> <head> ...

  5. Django开发框架知识点

    一.什么是web服务器(了解) 当我们在浏览器输入URL后,浏览器会先请求DNS服务器,获得请求站点的 IP 地址.然后发送一个HTTP Request(请求)给拥有该 IP 的主机,接着就会接收到服 ...

  6. 内存:你跑慢点行不行?CPU:跑慢点你养我吗?内存:我不管!(内附超全思维导图)

    主存(RAM) 是一件非常重要的资源,必须要认真对待内存.虽然目前大多数内存的增长速度要比 IBM 7094 要快的多,但是,程序大小的增长要比内存的增长还快很多.不管存储器有多大,程序大小的增长速度 ...

  7. Js逆向-滑动验证码图片还原

    本文列举两个例子:某象和某验的滑动验证 一.某验:aHR0cHM6Ly93d3cuZ2VldGVzdC5jb20vZGVtby9zbGlkZS1mbG9hdC5odG1s 未还原图像: 还原后的图: ...

  8. springcloud gateway整合sentinel

    1.引入依赖 <parent> <groupId>org.springframework.boot</groupId> <artifactId>spri ...

  9. Linux下MongoDB单实例的安装和配置详解

    推荐网站 MongoDB官网:http://www.mongodb.org/ MongoDB学习网站:http://www.runoob.com/mongodb 一.创建MongoDB的资源目录和安装 ...

  10. Simulink仿真入门到精通(八) M语言对Simulink模型的自动化操作及配置

    8.1 M语言控制模型的仿真 M语言与Simulink结合的方式: 在Simulink模型或模块中使用回调函数 在M语言中调用与模型相关的命令,控制模型的建立,设置模块的属性,增删信号线,以及运行模型 ...