使用 TensorFlow 进行基本操作的实例,这个实例主要是使用 TensorFlow 进行了加法运算。 包括使用 constant 常量进行加法运算和使用 placeholder
进行变量加法运算,以及扩展到矩阵的加法运算。 TensorFlow 变量定义,加法运算。

# -*- coding:utf-8 -*-
from __future__ import print_function '''
使用 TensorFlow 进行基本操作的实例,这个实例主要是使用 TensorFlow 进行了加法运算。
包括使用 constant 常量进行加法运算和使用 placeholder 进行变量加法运算,以及扩展到矩阵的加法运算。
TensorFlow 变量定义,加法运算。
'''
'''
Basic Operations example using TensorFlow library. Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
''' import tensorflow as tf # Basic constant operations
# The value returned by the constructor represents the output
# of the Constant op.
a = tf.constant(2)
b = tf.constant(3) # Launch the default graph.
with tf.Session() as sess:
print("a=2, b=3")
print("Addition with constants: %i" % sess.run(a+b))
print("Multiplication with constants: %i" % sess.run(a*b)) # Basic Operations with variable as graph input
# The value returned by the constructor represents the output
# of the Variable op. (define as input when running session)
# tf Graph input
a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16) # Define some operations
add = tf.add(a, b)
mul = tf.multiply(a, b) # Launch the default graph.
with tf.Session() as sess:
# Run every operation with variable input
print("Addition with variables: %i" % sess.run(add, feed_dict={a: 2, b: 3}))
print("Multiplication with variables: %i" % sess.run(mul, feed_dict={a: 2, b: 3})) # ----------------
# More in details:
# Matrix Multiplication from TensorFlow official tutorial # Create a Constant op that produces a 1x2 matrix. The op is
# added as a node to the default graph.
#
# The value returned by the constructor represents the output
# of the Constant op.
matrix1 = tf.constant([[3., 3.]]) # Create another Constant that produces a 2x1 matrix.
matrix2 = tf.constant([[2.],[2.]]) # Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs.
# The returned value, 'product', represents the result of the matrix
# multiplication.
product = tf.matmul(matrix1, matrix2) # To run the matmul op we call the session 'run()' method, passing 'product'
# which represents the output of the matmul op. This indicates to the call
# that we want to get the output of the matmul op back.
#
# All inputs needed by the op are run automatically by the session. They
# typically are run in parallel.
#
# The call 'run(product)' thus causes the execution of threes ops in the
# graph: the two constants and matmul.
#
# The output of the op is returned in 'result' as a numpy `ndarray` object.
with tf.Session() as sess:
result = sess.run(product)
print(result)
# ==> [[ 12.]]

查看更多
TensorFlow 教程:http://www.tensorflownews.com/

TensorFlow 基本变量定义,基本操作,矩阵基本操作的更多相关文章

  1. 【TensorFlow入门完全指南】基本操作

    众所周知我暂时弃掉了那个音乐生成的坑,原因是我的代码写得还不够纯熟…… 现在我找到了一个项目,用来从代码基础开始补起,同时写下学习笔记. 项目地址:https://github.com/aymeric ...

  2. Matlab矩阵基本操作(定义,运算)

    转自:http://blog.csdn.net/perfumekristy/article/details/8119861 一.矩阵的表示在MATLAB中创建矩阵有以下规则: a.矩阵元素必须在”[ ...

  3. <矩阵的基本操作:矩阵相加,矩阵相乘,矩阵转置>

    //矩阵的基本操作:矩阵相加,矩阵相乘,矩阵转置 #include<stdio.h> #include<stdlib.h> #define M 2 #define N 3 #d ...

  4. TensorFlow从0到1之矩阵基本操作及其实现(7)

    矩阵运算,例如执行乘法.加法和减法,是任何神经网络中信号传播的重要操作.通常在计算中需要随机矩阵.零矩阵.一矩阵或者单位矩阵. 本节将告诉你如何获得不同类型的矩阵,以及如何对它们进行不同的矩阵处理操作 ...

  5. Matlab - 矩阵基本操作

    1. 矩阵的输入 右值是用方括号表示: , 逗号或空格分隔元素     ; 分号分隔行 >> A = [-, ; , ] A = - 2. 矩阵的加减 >> C = A + B ...

  6. TensorFlow安装,升级,基本操作

    一. 安装 ubuntu 16 python 2.7 pip install tensorflow 测试安装完成效果: 查看tensorFlow版本python import tensorflow a ...

  7. 博客三--tensorflow的队列及线程基本操作

    连接我的开源中国账号:https://my.oschina.net/u/3770644/blog/3036960查询

  8. 8 tensorflow修改tensor张量矩阵的某一列

    1.tensorflow的数据流图限制了它的tensor是只读属性,因此对于一个Tensor(张量)形式的矩阵,想修改特定位置的元素,比较困难. 2.我要做的是将所有的操作定义为符号形式的操作.也就是 ...

  9. python/numpy/tensorflow中,对矩阵行列操作,下标是怎么回事儿?

    Python中的list/tuple,numpy中的ndarrray与tensorflow中的tensor. 用python中list/tuple理解,仅仅是从内存角度理解一个序列数据,而非数学中标量 ...

随机推荐

  1. docker学习读书笔记-一期-整理

    0.Docker - 第零章:前言 1.Docker - 第一章:Docker简介 2.Docker - 第二章:第一个Docker应用 3.Docker - 第三章:Docker常用命令 4.Doc ...

  2. Leetcode 142题 环形链表 II(Linked List Cycle II) Java语言求解

    题目描述: 给定一个链表,返回链表开始入环的第一个节点. 如果链表无环,则返回 null. 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始). 如果 p ...

  3. 【ThinkPHP6:从TP3升级到放弃】1. 前言及准备工作

    春节期间因为疫情的关系出不去门,所以就研究了一下ThinkPHP的最新版本6.0.2, 自己写了一个博客程序. 现在, 打算写一个ThinkPHP6的专题, 用来把自己在写博客的过程中入过的坑和获得的 ...

  4. 安装Kubernetes集群时遇到的问题及解决方法

    在搭建Kubernetes集群时遇到一些问题,记录在这里. 搭建过程在另一篇文章:VirtualBox上使用kubeadm安装Kubernetes集群 1. 虚拟机安装完CentOS7登录时遇到war ...

  5. 【Java】Map总结和源码注释

    前言 Map为一个Java中一个重要的数据结构,主要表示<key, value>的映射关系对.本文包括了相关Map数据结构的总结和源码的阅读注释. HashMap 初始化,可以选择第二个初 ...

  6. MySQL集群MGR架构for单主模式

    本文转载自: https://www.93bok.com MGR简介 MySQL Group Replication(简称MGR)是MySQL官方于2016年12月推出的一个全新的高可用与高扩展的解决 ...

  7. ubuntu下pip的安装,更新及卸载

    在Ubuntu下,不小心uninstall pip了,然后呢,作为小白的我,还是有些着急的,用了一些方法不好使,最后找到了这个方法: 1.安装pip3: sudo apt-get install py ...

  8. spring boot Shiro JWT整合

    一个api要支持H5, PC和APP三个前端,如果使用session的话对app不是很友好,而且session有跨域攻击的问题,所以选择了JWT 1.导入依赖包 <dependency> ...

  9. webpack压缩图片之项目资源优化

    webpack打包时,会根据webpack.config.js 中url-loader中设置的limit大小来对图片进行处理,小于limit的图片转化成base64格式,其余的不做操作.对于比较大的图 ...

  10. Docker 使用杂记 - 最佳实践尝试 - 实战

    目录 Docker 使用杂记 - 最佳实践尝试 - 实战 Docker简介 项目背景 内在原因 外在原因 基础镜像 需求 镜像维护者 工作文件夹 文件 ADD COPY 宗卷 命令 入口点 Docke ...