3.keras-简单实现Mnist数据集分类
keras-简单实现Mnist数据集分类
1.载入数据以及预处理
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import *
from keras.optimizers import SGD import os import tensorflow as tf # 载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data() # 预处理
# 将(60000,28,28)转化为(600000,784),好输入展开层
x_train = x_train.reshape(x_train.shape[0],-1)/255.0
x_test= x_test.reshape(x_test.shape[0],-1)/255.0
# 将输出转化为one_hot编码
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
2.创建网络打印训练结果
# 创建网络
model = Sequential([
# 输入784输出10个
Dense(units=10,input_dim=784,bias_initializer='one',activation='softmax')
])
# 编译
# 自定义优化器
sgd = SGD(lr=0.1)
model.compile(optimizer=sgd,
loss='mse',
# 得到训练过程中的准确率
metrics=['accuracy']) model.fit(x_train,y_train,batch_size=32,epochs=10,validation_split=0.2) # 评估模型
loss,acc = model.evaluate(x_test,y_test,)
print('\ntest loss',loss)
print('test acc',acc)
out:
Epoch 1/10
32/48000 [..............................] - ETA: 2:27 - loss: 0.0905 - acc: 0.1875
1248/48000 [..............................] - ETA: 5s - loss: 0.0907 - acc: 0.1346
......
......
Epoch 10/10
45952/48000 [===========================>..] - ETA: 0s - loss: 0.0164 - acc: 0.9005
47616/48000 [============================>.] - ETA: 0s - loss: 0.0163 - acc: 0.9008
48000/48000 [==============================] - 2s 37us/step - loss: 0.0163 - acc: 0.9010 - val_loss: 0.0149 - val_acc: 0.9084
32/10000 [..............................] - ETA: 4s
3360/10000 [=========>....................] - ETA: 0s
5824/10000 [================>.............] - ETA: 0s
8512/10000 [========================>.....] - ETA: 0s
10000/10000 [==============================] - 0s 20us/step
test loss 0.015059704356454312
test acc 0.908
3.keras-简单实现Mnist数据集分类的更多相关文章
- 机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化
一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度 ...
- 6.keras-基于CNN网络的Mnist数据集分类
keras-基于CNN网络的Mnist数据集分类 1.数据的载入和预处理 import numpy as np from keras.datasets import mnist from keras. ...
- 深度学习(一)之MNIST数据集分类
任务目标 对MNIST手写数字数据集进行训练和评估,最终使得模型能够在测试集上达到\(98\%\)的正确率.(最终本文达到了\(99.36\%\)) 使用的库的版本: python:3.8.12 py ...
- MNIST数据集分类简单版本
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = ...
- 6.MNIST数据集分类简单版本
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据集 mnist = i ...
- Tensorflow学习教程------普通神经网络对mnist数据集分类
首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元 代码如下 #coding:utf-8 import tensorflow as tf from tensorflow.exam ...
- 神经网络MNIST数据集分类tensorboard
今天分享同样数据集的CNN处理方式,同时加上tensorboard,可以看到清晰的结构图,迭代1000次acc收敛到0.992 先放代码,注释比较详细,变量名字看单词就能知道啥意思 import te ...
- 卷积神经网络应用于MNIST数据集分类
先贴代码 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = inpu ...
- keras实现mnist数据集手写数字识别
一. Tensorflow环境的安装 这里我们只讲CPU版本,使用 Anaconda 进行安装 a.首先我们要安装 Anaconda 链接:https://pan.baidu.com/s/1AxdGi ...
随机推荐
- 如何搭建一个WEB服务器项目(三)—— 实现安卓端联网登录
安卓端调用服务器登录函数进行验证登录 观前提示:本系列文章有关服务器以及后端程序这些概念,我写的全是自己的理解,并不一定正确,希望不要误人子弟.欢迎各位大佬来评论区提出问题或者是指出错误,分享宝贵经验 ...
- vue+express上传头像到数据库中img的路径
项目结构 express中间件指定静态资源目录 app.use("/static",express.static(path.join(__dirname,"/public ...
- 可修改的区间第K大 BZOJ1901 ZOJ2112
http://blog.csdn.net/u014492306/article/details/47981315 //变相离线做法 离散化缩小区间范围,做两大个线段树,第一个就是普通的持久化树,有个前 ...
- Floyd's Triangle
Floyd's Triangle Floyd's triangle is a right-angled triangular array of natural numbers. Floyd's tri ...
- python list 与 String 互相转换
str0 = '127.0.0.1' list0 = str0.split('.') print(list0) #['127', '0', '0', '1'] str1 = '#'.join(list ...
- python+selenium 自动化测试框架-学习记录
本人小白一枚,想着把学习时的东西以博客的方式记录下来,文章中有不正确的地方请大佬多多指点!!共同学习 前期准备 安装python3.selenium.下载对应版本的webdriver:安装所需的第三 ...
- Java——反射三种方式的效率对比
转载自:https://blog.csdn.net/aitcax/article/details/52694423 1 使用field(效率最高) long start = S ...
- C语言Printf()规定符号
%d 十进制有符号整数 %u 十进制无符号整数 %f 浮点数 %s 字符串 %c 单个字符 %p 指针的值 %e 指数形式的浮点数 %x, %X 无符号以十六进制表示的整数 %o 无符号以八进制表示的 ...
- 破解webstorm 亲测有效
一.首先安装好webstorm,并且配置hosts文件 二.使用以下激活码进行激活,亲测有效可以用到2099年 4RULSIH54N-eyJsaWNlbnNlSWQiOiI0UlVMU0lINTROI ...
- Go 包管理中的常见问题
随处可见的GO111MODULE=on 在GitHub上,经常看到不少项目的readme里都有这么一句: ✗ GO111MODULE=on go get golang.org/x/tools/gopl ...