softmax回归

线性回归模型适用于输出为连续值的情景,而softmax回归的输出单元由一个变成了多个,且引入了softmax运算输出类别的概率分布,使输出更适合离散值的预测与训练,模型输出可以是一个像图像类别这样的离散值,其是一个单层神经网络,输出个数等于分类问题中的类别个数。

分类问题

考虑一个简单的图像分类问题,其输入图像的宽和高均为2像素,且色彩为灰度。这样每个像素值都可以用一个标量表示。将图像中的4像素分别记为,假设训练数据集中图像的真实标签为

家乐的深度学习笔记「4」 - softmax回归的更多相关文章

  1. UFLDL深度学习笔记 (二)SoftMax 回归(矩阵化推导)

    UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细 ...

  2. Google TensorFlow深度学习笔记

    Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Gith ...

  3. 深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)

    深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 ...

  4. UFLDL深度学习笔记 (一)反向传播与稀疏自编码

    UFLDL深度学习笔记 (一)基本知识与稀疏自编码 前言 近来正在系统研究一下深度学习,作为新入门者,为了更好地理解.交流,准备把学习过程总结记录下来.最开始的规划是先学习理论推导:然后学习一两种开源 ...

  5. UFLDL深度学习笔记 (七)拓扑稀疏编码与矩阵化

    UFLDL深度学习笔记 (七)拓扑稀疏编码与矩阵化 主要思路 前面几篇所讲的都是围绕神经网络展开的,一个标志就是激活函数非线性:在前人的研究中,也存在线性激活函数的稀疏编码,该方法试图直接学习数据的特 ...

  6. UFLDL深度学习笔记 (六)卷积神经网络

    UFLDL深度学习笔记 (六)卷积神经网络 1. 主要思路 "UFLDL 卷积神经网络"主要讲解了对大尺寸图像应用前面所讨论神经网络学习的方法,其中的变化有两条,第一,对大尺寸图像 ...

  7. UFLDL深度学习笔记 (五)自编码线性解码器

    UFLDL深度学习笔记 (五)自编码线性解码器 1. 基本问题 在第一篇 UFLDL深度学习笔记 (一)基本知识与稀疏自编码中讨论了激活函数为\(sigmoid\)函数的系数自编码网络,本文要讨论&q ...

  8. UFLDL深度学习笔记 (四)用于分类的深度网络

    UFLDL深度学习笔记 (四)用于分类的深度网络 1. 主要思路 本文要讨论的"UFLDL 建立分类用深度网络"基本原理基于前2节的softmax回归和 无监督特征学习,区别在于使 ...

  9. UFLDL深度学习笔记 (三)无监督特征学习

    UFLDL深度学习笔记 (三)无监督特征学习 1. 主题思路 "UFLDL 无监督特征学习"本节全称为自我学习与无监督特征学习,和前一节softmax回归很类似,所以本篇笔记会比较 ...

随机推荐

  1. 事务以及Spring的事务管理

    一.什么是事务? 事务是逻辑上的一组操作,要么都执行,要么都不执行 二.事务的特性(ACID) 原子性: 事务是最小的执行单位,不允许分割.事务的原子性确保动作要么全部完成,要么完全不起作用: 一致性 ...

  2. YCSB项目学习

    主要总结Yahoo的数据库测试项目YCSB的使用(针对redis). github网址:https://github.com/brianfrankcooper/YCSB 需要安装 java maven ...

  3. Mysql锁和死锁分析

    在MySQL中,行级锁并不是直接锁记录,而是锁索引.索引分为主键索引和非主键索引两种,如果一条sql语句操作了主键索引,MySQL就会锁定这条主键索引;如果一条语句操作了非主键索引,MySQL会先锁定 ...

  4. Geohash介绍

    Geohash介绍 Geohash是一种地址编码,能把二维的经纬度编码成字符串,某一区域范围内的经纬度是一致的,其中有编码长度控制区域的范围 精度参考 使用场景 实时LBS应用 LBS应用中,搜索某某 ...

  5. Spring Boot 2.x基础教程:使用MyBatis访问MySQL

    之前我们已经介绍了两种在Spring Boot中访问关系型数据库的方式: 使用spring-boot-starter-jdbc 使用spring-boot-starter-data-jpa 虽然Spr ...

  6. jvm的运行参数

    1.我们为什么要对jvm做优化? 在本地开发环境中我们很少会遇到需要对jvm进行优化的需求,但是到了生产环境,我们可能将有下面的需求: 运行的应用“卡住了”,日志不输出,程序没有反应 服务器的CPU负 ...

  7. react-native 使用leanclound消息推送

    iOS消息推送的基本流程 1.注册:为应用程序申请消息推送服务.此时你的设备会向APNs服务器发送注册请求.2. APNs服务器接受请求,并将deviceToken返给你设备上的应用程序 3.客户端应 ...

  8. 关于css 的垂直居中

    对于元素的水平居中,我根据我自己之前的一些学习来进行一些总结,如果有不对的地方,欢迎指正~ 一.让大小不固定的元素垂直居中 因为:表格的单元格的特别属性:垂直居中等: `div.parent { di ...

  9. Python-Requests库的安装和调用

    #使用pip或者pip3安装requests库pip3 install requests #requests库:python #输入python进入命令行模式在cmd命令行中依次运行以下代码,或者直接 ...

  10. java线程间的协作

    本次内容主要讲等待/通知机制以及用等待/通知机制手写一个数据库连接池. 1.为什么线程之间需要协作 线程之间相互配合,完成某项工作,比如:一个线程修改了一个对象的值,而另一个线程感知到了变化,然后进行 ...