SGD/BGD/MBGD使用python简单实现
算法具体可以参照其他的博客:
随机梯度下降:
# coding=utf-8
'''
随机梯度下降
'''
import numpy as np # 构造训练数据
x = np.arange(0., 10., 0.2)
m = len(x)
x0 = np.full(m, 1.0)
input_data = np.vstack([x0, x]).T # 将偏置b作为权向量的第一个分量
target_data = 3 * x + 8 + np.random.randn(m) max_iter = 10000 # 最大迭代次数
epsilon = 1e-5 # 初始化权值
w = np.random.randn(2)
# w = np.zeros(2) alpha = 0.001 # 步长
diff = 0.
error = np.zeros(2)
count = 0 # 循环次数 print '随机梯度下降算法'.center(60, '=') while count < max_iter:
count += 1
for j in range(m):
diff = np.dot(w, input_data[j]) - target_data[j] # 训练集代入,计算误差值
# 这里的随机性表现在:一个样本更新一次参数!
w = w - alpha * diff * input_data[j] if np.linalg.norm(w - error) < epsilon: # 直接通过np.linalg包求两个向量的范数
break
else:
error = w
print 'loop count = %d' % count, '\tw:[%f, %f]' % (w[0], w[1])
# coding=utf-8
"""
批量梯度下降
"""
import numpy as np # 构造训练数据
x = np.arange(0., 10., 0.2)
m = len(x)
x0 = np.full(m, 1.0)
input_data = np.vstack([x0, x]).T # 将偏置b作为权向量的第一个分量
target_data = 3 * x + 8 + np.random.randn(m) # 停止条件
max_iter = 10000
epsilon = 1e-5 # 初始化权值
w = np.random.randn(2)
# w = np.zeros(2) alpha = 0.001 # 步长
diff = 0.
error = np.zeros(2)
count = 0 # 循环次数 while count < max_iter:
count += 1 sum_m = np.zeros(2) for i in range(m):
dif = (np.dot(w, input_data[i]) - target_data[i]) * input_data[i]
sum_m = sum_m + dif
'''
for j in range(m):
diff = np.dot(w, input_data[j]) - target_data[j] # 训练集代入,计算误差值
w = w - alpha * diff * input_data[j]
'''
w = w - alpha * sum_m if np.linalg.norm(w - error) < epsilon:
break
else:
error = w
print 'loop count = %d' % count, '\tw:[%f, %f]' % (w[0], w[1])
小批量梯度下降:
# coding=utf-8
"""
小批量梯度下降
"""
import numpy as np
import random # 构造训练数据
x = np.arange(0., 10., 0.2)
m = len(x)
x0 = np.full(m, 1.0)
input_data = np.vstack([x0, x]).T # 将偏置b作为权向量的第一个分量
target_data = 3 * x + 8 + np.random.randn(m) # 两种终止条件
max_iter = 10000
epsilon = 1e-5 # 初始化权值
np.random.seed(0)
w = np.random.randn(2)
# w = np.zeros(2) alpha = 0.001 # 步长
diff = 0.
error = np.zeros(2)
count = 0 # 循环次数 while count < max_iter:
count += 1 sum_m = np.zeros(2)
index = random.sample(range(m), int(np.ceil(m * 0.2)))
sample_data = input_data[index]
sample_target = target_data[index] for i in range(len(sample_data)):
dif = (np.dot(w, input_data[i]) - target_data[i]) * input_data[i]
sum_m = sum_m + dif w = w - alpha * sum_m if np.linalg.norm(w - error) < epsilon:
break
else:
error = w
print 'loop count = %d' % count, '\tw:[%f, %f]' % (w[0], w[1])
通过迭代,结果会收敛到8和3:
loop count = w:[8.025972, 2.982300]
参考:http://www.cnblogs.com/pinard/p/5970503.html
SGD/BGD/MBGD使用python简单实现的更多相关文章
- 深度学习——优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论 ...
- 【深度学习】深入理解优化器Optimizer算法(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论 ...
- Python简单爬虫入门三
我们继续研究BeautifulSoup分类打印输出 Python简单爬虫入门一 Python简单爬虫入门二 前两部主要讲述我们如何用BeautifulSoup怎去抓取网页信息以及获取相应的图片标题等信 ...
- Python简单爬虫入门二
接着上一次爬虫我们继续研究BeautifulSoup Python简单爬虫入门一 上一次我们爬虫我们已经成功的爬下了网页的源代码,那么这一次我们将继续来写怎么抓去具体想要的元素 首先回顾以下我们Bea ...
- 亲身试用python简单小爬虫
前几天基友分享了一个贴吧网页,有很多漂亮的图片,想到前段时间学习的python简单爬虫,刚好可以实践一下. 以下是网上很容易搜到的一种方法: #coding=utf-8 import urllib i ...
- GJM : Python简单爬虫入门(二) [转载]
感谢您的阅读.喜欢的.有用的就请大哥大嫂们高抬贵手"推荐一下"吧!你的精神支持是博主强大的写作动力以及转载收藏动力.欢迎转载! 版权声明:本文原创发表于 [请点击连接前往] ,未经 ...
- Selenium + PhantomJS + python 简单实现爬虫的功能
Selenium 一.简介 selenium是一个用于Web应用自动化程序测试的工具,测试直接运行在浏览器中,就像真正的用户在操作一样 selenium2支持通过驱动真实浏览器(FirfoxDrive ...
- 【美妙的Python之中的一个】Python简单介绍及环境搭建
美妙的Python之Python简单介绍及安装 简而言之: Python 是能你无限惊喜的语言,与众不同. 1.Python: ...
- python 简单图像识别--验证码
python 简单图像识别--验证码 记录下,准备工作安装过程很是麻烦. 首先库:pytesseract,image,tesseract,PIL windows安装PIL,直接exe进行安装更方便( ...
随机推荐
- org.springframework.test.context.junit4.SpringJUnit4ClassRunner
项目中有了spring-test的依赖,里面确实也有 org.springframework.test.context.junit4.SpringJUnit4ClassRunner 此类,但是项目就是 ...
- ..\OBJ\LED.axf: Error: L6218E: Undefined symbol EXTI_Init (referred from exti.o). 错误修改
今天在移植野火的程序到元子的开发平台上时候,发现自己在中断初话中断函数的时候出现了:..\OBJ\LED.axf: Error: L6218E: Undefined symbol EXTI_Init ...
- 18 12 25 css 基本语法以及页面使用
css的定义方法是: 选择器 { 属性:值; 属性:值; 属性:值;} 选择器是将样式和页面元素关联起来的名称,属性是希望设置的样式属性每个属性有一个或多个值 css页面引入方法: 1.外联式:通过l ...
- 谈IO中的阻塞和非阻塞,同步和异步及三种IO模型
什么是同步和异步? 烧水,我们都是通过热水壶来烧水的.在很久之前,科技还没有这么发达的时候,如果我们要烧水,需要把水壶放到火炉上,我们通过观察水壶内的水的沸腾程度来判断水有没有烧开.随着科技的发展,现 ...
- Spring Cloud Alibaba 教程 | 前世今生
Spring Cloud Alibaba是什么 先来看一下官方是怎么定义Spring Cloud Alibaba的: Spring Cloud Alibaba 致力于提供微服务开发的一站式解决方案.此 ...
- tp5 输入域名即访问指定页面
遇到PC官网类型的项目,经常会遇到隐藏入口文件和输入域名即可打开官网首页的需求.需要修改站点的默认加载文件和伪静态的配置才可以生效. 以下为nginx1.15版本,宝塔面板的修改方式.修改入口文件为w ...
- h5-钟表动画案例
1.html代码 <div class="clock"> <div class="line line1"> <div class= ...
- MyBatis 查询结果的缓存
MyBatis的缓存指的是缓存查询结果,当以后使用相同的sql语句.传入相同的参数进行查询时,可直接从mybatis本地缓存中获取查询结果,而不必查询数据库. mybatis的缓存包括一级缓存.二级缓 ...
- VC调用VB写的COM
VB. 步骤: 1.创建类库:类库的创建必须分为接口和实现类:给外面提供的是COM接口: 创建了接口和类之后还要创建"Guid",这个在"工具->创建GUID&qu ...
- 编程作业2.2:Regularized Logistic regression
题目 在本部分的练习中,您将使用正则化的Logistic回归模型来预测一个制造工厂的微芯片是否通过质量保证(QA),在QA过程中,每个芯片都会经过各种测试来保证它可以正常运行.假设你是这个工厂的产品经 ...