一、Flink 简介

Apache Flink 诞生于柏林工业大学的一个研究性项目,原名 StratoSphere 。2014 年,由 StratoSphere 项目孵化出 Flink,并于同年捐赠 Apache,之后成为 Apache 的顶级项目。2019 年 1 年,阿里巴巴收购了 Flink 的母公司 Data Artisans,并宣布开源内部的 Blink,Blink 是阿里巴巴基于 Flink 优化后的版本,增加了大量的新功能,并在性能和稳定性上进行了各种优化,经历过阿里内部多种复杂业务的挑战和检验。同时阿里巴巴也表示会逐步将这些新功能和特性 Merge 回社区版本的 Flink 中,因此 Flink 成为目前最为火热的大数据处理框架。

简单来说,Flink 是一个分布式的流处理框架,它能够对有界和无界的数据流进行高效的处理。Flink 的核心是流处理,当然它也能支持批处理,Flink 将批处理看成是流处理的一种特殊情况,即数据流是有明确界限的。这和 Spark Streaming 的思想是完全相反的,Spark Streaming 的核心是批处理,它将流处理看成是批处理的一种特殊情况, 即把数据流进行极小粒度的拆分,拆分为多个微批处理。

Flink 有界数据流和无界数据流:

Spark Streaming 数据流的拆分:

二、Flink 核心架构

Flink 采用分层的架构设计,从而保证各层在功能和职责上的清晰。如下图所示,由上而下分别是 API & Libraries 层、Runtime 核心层以及物理部署层:

2.1 API & Libraries 层

这一层主要提供了编程 API 和 顶层类库:

  • 编程 API : 用于进行流处理的 DataStream API 和用于进行批处理的 DataSet API;
  • 顶层类库:包括用于复杂事件处理的 CEP 库;用于结构化数据查询的 SQL & Table 库,以及基于批处理的机器学习库 FlinkML 和 图形处理库 Gelly。

2.2 Runtime 核心层

这一层是 Flink 分布式计算框架的核心实现层,包括作业转换,任务调度,资源分配,任务执行等功能,基于这一层的实现,可以在流式引擎下同时运行流处理程序和批处理程序。

2.3 物理部署层

Flink 的物理部署层,用于支持在不同平台上部署运行 Flink 应用。

三、Flink 分层 API

在上面介绍的 API & Libraries 这一层,Flink 又进行了更为具体的划分。具体如下:

按照如上的层次结构,API 的一致性由下至上依次递增,接口的表现能力由下至上依次递减,各层的核心功能如下:

3.1 SQL & Table API

SQL & Table API 同时适用于批处理和流处理,这意味着你可以对有界数据流和无界数据流以相同的语义进行查询,并产生相同的结果。除了基本查询外, 它还支持自定义的标量函数,聚合函数以及表值函数,可以满足多样化的查询需求。

3.2 DataStream & DataSet API

DataStream & DataSet API 是 Flink 数据处理的核心 API,支持使用 Java 语言或 Scala 语言进行调用,提供了数据读取,数据转换和数据输出等一系列常用操作的封装。

3.3 Stateful Stream Processing

Stateful Stream Processing 是最低级别的抽象,它通过 Process Function 函数内嵌到 DataStream API 中。 Process Function 是 Flink 提供的最底层 API,具有最大的灵活性,允许开发者对于时间和状态进行细粒度的控制。

四、Flink 集群架构

4.1 核心组件

按照上面的介绍,Flink 核心架构的第二层是 Runtime 层, 该层采用标准的 Master - Slave 结构, 其中,Master 部分又包含了三个核心组件:Dispatcher、ResourceManager 和 JobManager,而 Slave 则主要是 TaskManager 进程。它们的功能分别如下:

  • JobManagers (也称为 masters) :JobManagers 接收由 Dispatcher 传递过来的执行程序,该执行程序包含了作业图 (JobGraph),逻辑数据流图 (logical dataflow graph) 及其所有的 classes 文件以及第三方类库 (libraries) 等等 。紧接着 JobManagers 会将 JobGraph 转换为执行图 (ExecutionGraph),然后向 ResourceManager 申请资源来执行该任务,一旦申请到资源,就将执行图分发给对应的 TaskManagers 。因此每个作业 (Job) 至少有一个 JobManager;高可用部署下可以有多个 JobManagers,其中一个作为 leader,其余的则处于 standby 状态。
  • TaskManagers (也称为 workers) : TaskManagers 负责实际的子任务 (subtasks) 的执行,每个 TaskManagers 都拥有一定数量的 slots。Slot 是一组固定大小的资源的合集 (如计算能力,存储空间)。TaskManagers 启动后,会将其所拥有的 slots 注册到 ResourceManager 上,由 ResourceManager 进行统一管理。
  • Dispatcher:负责接收客户端提交的执行程序,并传递给 JobManager 。除此之外,它还提供了一个 WEB UI 界面,用于监控作业的执行情况。
  • ResourceManager :负责管理 slots 并协调集群资源。ResourceManager 接收来自 JobManager 的资源请求,并将存在空闲 slots 的 TaskManagers 分配给 JobManager 执行任务。Flink 基于不同的部署平台,如 YARN , Mesos,K8s 等提供了不同的资源管理器,当 TaskManagers 没有足够的 slots 来执行任务时,它会向第三方平台发起会话来请求额外的资源。

4.2 Task & SubTask

上面我们提到:TaskManagers 实际执行的是 SubTask,而不是 Task,这里解释一下两者的区别:

在执行分布式计算时,Flink 将可以链接的操作 (operators) 链接到一起,这就是 Task。之所以这样做, 是为了减少线程间切换和缓冲而导致的开销,在降低延迟的同时可以提高整体的吞吐量。 但不是所有的 operator 都可以被链接,如下 keyBy 等操作会导致网络 shuffle 和重分区,因此其就不能被链接,只能被单独作为一个 Task。 简单来说,一个 Task 就是一个可以链接的最小的操作链 (Operator Chains) 。如下图,source 和 map 算子被链接到一块,因此整个作业就只有三个 Task:

解释完 Task ,我们在解释一下什么是 SubTask,其准确的翻译是: A subtask is one parallel slice of a task,即一个 Task 可以按照其并行度拆分为多个 SubTask。如上图,source & map 具有两个并行度,KeyBy 具有两个并行度,Sink 具有一个并行度,因此整个虽然只有 3 个 Task,但是却有 5 个 SubTask。Jobmanager 负责定义和拆分这些 SubTask,并将其交给 Taskmanagers 来执行,每个 SubTask 都是一个单独的线程。

4.3 资源管理

理解了 SubTasks ,我们再来看看其与 Slots 的对应情况。一种可能的分配情况如下:

这时每个 SubTask 线程运行在一个独立的 TaskSlot, 它们共享所属的 TaskManager 进程的TCP 连接(通过多路复用技术)和心跳信息 (heartbeat messages),从而可以降低整体的性能开销。此时看似是最好的情况,但是每个操作需要的资源都是不尽相同的,这里假设该作业 keyBy 操作所需资源的数量比 Sink 多很多 ,那么此时 Sink 所在 Slot 的资源就没有得到有效的利用。

基于这个原因,Flink 允许多个 subtasks 共享 slots,即使它们是不同 tasks 的 subtasks,但只要它们来自同一个 Job 就可以。假设上面 souce & map 和 keyBy 的并行度调整为 6,而 Slot 的数量不变,此时情况如下:

可以看到一个 Task Slot 中运行了多个 SubTask 子任务,此时每个子任务仍然在一个独立的线程中执行,只不过共享一组 Sot 资源而已。那么 Flink 到底如何确定一个 Job 至少需要多少个 Slot 呢?Flink 对于这个问题的处理很简单,默认情况一个 Job 所需要的 Slot 的数量就等于其 Operation 操作的最高并行度。如下, A,B,D 操作的并行度为 4,而 C,E 操作的并行度为 2,那么此时整个 Job 就需要至少四个 Slots 来完成。通过这个机制,Flink 就可以不必去关心一个 Job 到底会被拆分为多少个 Tasks 和 SubTasks。

4.4 组件通讯

Flink 的所有组件都基于 Actor System 来进行通讯。Actor system是多种角色的 actor 的容器,它提供调度,配置,日志记录等多种服务,并包含一个可以启动所有 actor 的线程池,如果 actor 是本地的,则消息通过共享内存进行共享,但如果 actor 是远程的,则通过 RPC 的调用来传递消息。

五、Flink 的优点

最后基于上面的介绍,来总结一下 Flink 的优点:

  • Flink 是基于事件驱动 (Event-driven) 的应用,能够同时支持流处理和批处理;
  • 基于内存的计算,能够保证高吞吐和低延迟,具有优越的性能表现;
  • 支持精确一次 (Exactly-once) 语意,能够完美地保证一致性和正确性;
  • 分层 API ,能够满足各个层次的开发需求;
  • 支持高可用配置,支持保存点机制,能够提供安全性和稳定性上的保证;
  • 多样化的部署方式,支持本地,远端,云端等多种部署方案;
  • 具有横向扩展架构,能够按照用户的需求进行动态扩容;
  • 活跃度极高的社区和完善的生态圈的支持。

参考资料

系列传送门

入门大数据---Flink核心概念综述的更多相关文章

  1. 入门大数据---Flink学习总括

    第一节 初识 Flink 在数据激增的时代,催生出了一批计算框架.最早期比较流行的有MapReduce,然后有Spark,直到现在越来越多的公司采用Flink处理.Flink相对前两个框架真正做到了高 ...

  2. 入门大数据---Flink开发环境搭建

    一.安装 Scala 插件 Flink 分别提供了基于 Java 语言和 Scala 语言的 API ,如果想要使用 Scala 语言来开发 Flink 程序,可以通过在 IDEA 中安装 Scala ...

  3. 入门大数据---SparkSQL外部数据源

    一.简介 1.1 多数据源支持 Spark 支持以下六个核心数据源,同时 Spark 社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景. CSV JSON Parquet ORC JD ...

  4. 入门大数据---Kafka的搭建与应用

    前言 上一章介绍了Kafka是什么,这章就讲讲怎么搭建以及如何使用. 快速开始 Step 1:Download the code Download the 2.4.1 release and un-t ...

  5. 入门大数据---Kylin是什么?

    一.Kylin是什么? Apache Kylin是一个开源的.分布式的分析型数据仓库,提供Hadoop/Spark 上的SQL查询接口及多维度分析(OLAP)能力以支持超大规模的数据,最初由eBay开 ...

  6. Docker入门——理解Docker的核心概念

    1 前言 相信不少人听过这么一句话: 人类的本质是复读机. 在软件开发领域也一样,我们总是想寻找更好地方式复制优秀的逻辑或系统.最核心的方法是抽取通用逻辑和组件,把差异化的东西接口化或配置化,达到复用 ...

  7. 保证看完就会!大数据YRAN核心知识点来袭!

    01 我们一起学大数据 大家好,今天分享的是大数据YRAN的核心知识点,老刘尽量用通俗易懂的话来讲述YARN知识点,争取做到大家看完后能够用口语化的形式将它们表达出来,做到真正的看完就会!(如果觉得老 ...

  8. 大白话详解大数据HBase核心知识点,老刘真的很用心(3)

    老刘目前为明年校招而努力,写文章主要是想用大白话把自己复习的大数据知识点详细解释出来,拒绝资料上的生搬硬套,做到有自己的理解! 01 HBase知识点(3) 第13点:HBase表的热点问题 什么是热 ...

  9. 入门大数据---Spark_Streaming整合Flume

    一.简介 Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming 提供了以下两种方式用于 ...

随机推荐

  1. Rocket - diplomacy - LazyModuleImpLike

    https://mp.weixin.qq.com/s/gDbUto1qd7uWbpnxovr5pg   介绍LazyModuleImpLike类的实现.     1. wrapper   LazyMo ...

  2. 个人记录HTML基础笔记

    无功能性标签 en strong 都表示强调,strong强调级更高 abbr 缩写 <abbr title="wangweiwang">w3c</annr> ...

  3. 集合遍历元素的3种方法:for、foreach、迭代器iterator

    1.for循环方式(Set集合不能使用,因为Set是无序的没有索引) for (int i = 0; i < list.size(); i++) { Object o = list.get(i) ...

  4. 前端HTML div标签的用法 盒子模型

    盒子模型 边框 border -外边距 margin- 内容与边框距离padding[会撑大div边框]- 宽width-高height. div的奇特玩法 1.把div弄成圆形 [css设置bord ...

  5. Linux (四) 基础命令 下

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 一.查看文件内容 1.命令  cat 对应单词:concatenate 作用:查看文件内容 常用参数: ...

  6. Java实现字符串的全排列

    1 问题描述 输入一个字符串,打印出该字符串的所有排列.例如,输入字符串"abc",则输出有字符'a','b','c'所能排列出来的所有字符串"abc",&qu ...

  7. java实现第五届蓝桥杯等额本金

    等额本金 题目描述 小明从银行贷款3万元.约定分24个月,以等额本金方式还款. 这种还款方式就是把贷款额度等分到24个月.每个月除了要还固定的本金外,还要还贷款余额在一个月中产生的利息. 假设月利率是 ...

  8. PAT 旧键盘打字

    旧键盘上坏了几个键,于是在敲一段文字的时候,对应的字符就不会出现.现在给出应该输入的一段文字.以及坏掉的那些键,打出的结果文字会是怎样? 输入格式: 输入在 2 行中分别给出坏掉的那些键.以及应该输入 ...

  9. vector常用方法

    1.find使用 不同于map(map有find方法),vector本身是没有find这一方法,其find是依靠algorithm来实现的. #include <iostream>#inc ...

  10. zabbix 监控进程,端口

    环境介绍 操作系统:centos 7.4 zabbix版本:zabbix server 3.4.7 客户端:zabbix-agent 3.4.7 监控进程:mysqld 监控端口:3306 tcp 进 ...