入门大数据---Spark累加器与广播变量
一、简介
在 Spark 中,提供了两种类型的共享变量:累加器 (accumulator) 与广播变量 (broadcast variable):
- 累加器:用来对信息进行聚合,主要用于累计计数等场景;
- 广播变量:主要用于在节点间高效分发大对象。
二、累加器
这里先看一个具体的场景,对于正常的累计求和,如果在集群模式中使用下面的代码进行计算,会发现执行结果并非预期:
var counter = 0
val data = Array(1, 2, 3, 4, 5)
sc.parallelize(data).foreach(x => counter += x)
println(counter)
counter 最后的结果是 0,导致这个问题的主要原因是闭包。
2.1 理解闭包
1. Scala 中闭包的概念
这里先介绍一下 Scala 中关于闭包的概念:
var more = 10
val addMore = (x: Int) => x + more
如上函数 addMore
中有两个变量 x 和 more:
- x : 是一个绑定变量 (bound variable),因为其是该函数的入参,在函数的上下文中有明确的定义;
- more : 是一个自由变量 (free variable),因为函数字面量本生并没有给 more 赋予任何含义。
按照定义:在创建函数时,如果需要捕获自由变量,那么包含指向被捕获变量的引用的函数就被称为闭包函数。
2. Spark 中的闭包
在实际计算时,Spark 会将对 RDD 操作分解为 Task,Task 运行在 Worker Node 上。在执行之前,Spark 会对任务进行闭包,如果闭包内涉及到自由变量,则程序会进行拷贝,并将副本变量放在闭包中,之后闭包被序列化并发送给每个执行者。因此,当在 foreach 函数中引用 counter
时,它将不再是 Driver 节点上的 counter
,而是闭包中的副本 counter
,默认情况下,副本 counter
更新后的值不会回传到 Driver,所以 counter
的最终值仍然为零。
需要注意的是:在 Local 模式下,有可能执行 foreach
的 Worker Node 与 Diver 处在相同的 JVM,并引用相同的原始 counter
,这时候更新可能是正确的,但是在集群模式下一定不正确。所以在遇到此类问题时应优先使用累加器。
累加器的原理实际上很简单:就是将每个副本变量的最终值传回 Driver,由 Driver 聚合后得到最终值,并更新原始变量。
2.2 使用累加器
SparkContext
中定义了所有创建累加器的方法,需要注意的是:被中横线划掉的累加器方法在 Spark 2.0.0 之后被标识为废弃。
使用示例和执行结果分别如下:
val data = Array(1, 2, 3, 4, 5)
// 定义累加器
val accum = sc.longAccumulator("My Accumulator")
sc.parallelize(data).foreach(x => accum.add(x))
// 获取累加器的值
accum.value
三、广播变量
在上面介绍中闭包的过程中我们说道每个 Task 任务的闭包都会持有自由变量的副本,如果变量很大且 Task 任务很多的情况下,这必然会对网络 IO 造成压力,为了解决这个情况,Spark 提供了广播变量。
广播变量的做法很简单:就是不把副本变量分发到每个 Task 中,而是将其分发到每个 Executor,Executor 中的所有 Task 共享一个副本变量。
// 把一个数组定义为一个广播变量
val broadcastVar = sc.broadcast(Array(1, 2, 3, 4, 5))
// 之后用到该数组时应优先使用广播变量,而不是原值
sc.parallelize(broadcastVar.value).map(_ * 10).collect()
参考资料
入门大数据---Spark累加器与广播变量的更多相关文章
- 入门大数据---Spark整体复习
一. Spark简介 1.1 前言 Apache Spark是一个基于内存的计算框架,它是Scala语言开发的,而且提供了一站式解决方案,提供了包括内存计算(Spark Core),流式计算(Spar ...
- spark累加器、广播变量
一言以蔽之: 累加器就是只写变量 通常就是做事件统计用的 因为rdd是在不同的excutor去执行的 你在不同excutor中累加的结果 没办法汇总到一起 这个时候就需要累加器来帮忙完成 广播变量是只 ...
- 入门大数据---Spark简介
一.简介 Spark 于 2009 年诞生于加州大学伯克利分校 AMPLab,2013 年被捐赠给 Apache 软件基金会,2014 年 2 月成为 Apache 的顶级项目.相对于 MapRedu ...
- 入门大数据---Spark开发环境搭建
一.安装Spark 1.1 下载并解压 官方下载地址:http://spark.apache.org/downloads.html ,选择 Spark 版本和对应的 Hadoop 版本后再下载: 解压 ...
- 入门大数据---Spark部署模式与作业提交
一.作业提交 1.1 spark-submit Spark 所有模式均使用 spark-submit 命令提交作业,其格式如下: ./bin/spark-submit \ --class <ma ...
- 入门大数据---Spark车辆监控项目
一.项目简介 这是一个车辆监控项目.主要实现了三个功能: 1.计算每一个区域车流量最多的前3条道路. 2.计算道路转换率 3.实时统计道路拥堵情况(当前时间,卡口编号,车辆总数,速度总数,平均速度) ...
- Spark学习之路(六)—— 累加器与广播变量
一.简介 在Spark中,提供了两种类型的共享变量:累加器(accumulator)与广播变量(broadcast variable): 累加器:用来对信息进行聚合,主要用于累计计数等场景: 广播变量 ...
- Spark 系列(六)—— 累加器与广播变量
一.简介 在 Spark 中,提供了两种类型的共享变量:累加器 (accumulator) 与广播变量 (broadcast variable): 累加器:用来对信息进行聚合,主要用于累计计数等场景: ...
- 王家林 大数据Spark超经典视频链接全集[转]
压缩过的大数据Spark蘑菇云行动前置课程视频百度云分享链接 链接:http://pan.baidu.com/s/1cFqjQu SCALA专辑 Scala深入浅出经典视频 链接:http://pan ...
随机推荐
- Rocket - debug - DMI
https://mp.weixin.qq.com/s/70BoeS7z4aBZK24zxdZzXA 简单介绍DMI的实现. 1. DMIConsts 定义DMI使用的常量: 其中: a. dmiDat ...
- jchdl - GSL值的传播
https://mp.weixin.qq.com/s/jgMljoca-Cwe9x0NaTLzZg GSL的拓扑模型是线和节点连接的模型,值的传播,即是值在线和节点之间传播和转化的过程. 值的 ...
- Chisel3 - util - Queue
https://mp.weixin.qq.com/s/vlyOIsQxR6bCqDDMtRQLLg 实现队列模块,先入先出(FIFO). 参考链接: https://github.com/fr ...
- Java实现 LeetCode 763 划分字母区间(暴力)
763. 划分字母区间 字符串 S 由小写字母组成.我们要把这个字符串划分为尽可能多的片段,同一个字母只会出现在其中的一个片段.返回一个表示每个字符串片段的长度的列表. 示例 1: 输入: S = & ...
- 【JVM故事】一个Java字节码文件的诞生记
万字长文,完全虚构. (一) 组里来了个实习生,李大胖面完之后,觉得水平一般,但还是留了下来,为什么呢?各自猜去吧. 李大胖也在心里开导自己,学生嘛,不能要求太高,只要肯上进,慢慢来.就称呼为小白吧. ...
- 栈 & 队列
栈 先进者后出,后进者先出,LIFO,典型的"栈"结构 从栈的操作特性上来看,栈是一种"操作受限"的线性表,只允许在一段插入和删除数据. 在功能上来说,数组和链 ...
- 温故知新-java虚拟机
文章目录 java虚拟机是什么? jvm的体系结构 第一个类加载子系统 类的生命周期 加载器分类 类加载机制 第二个运行时数据区(内存结构) GC算法和收集器 如何判断对象可以被回收? 如何判断一个常 ...
- 总结:PgSql备份pg_dump与还原pg_restore
备份还原方法:pg_dump和pg_restore,先仔细说明这两个命令,再记录我的操作方法. 远程复制scp: #which scp /usr/bin/scp #rpm -qf /usr/bin/ ...
- Java学习之多线程详解
一.多线程的实现 1.继承Thread类 a.子类继承Thread类具备多线程能力 b.启动线程:子类对象.start() c.不建议使用:避免OOP单继承局限性 package com. ...
- flex弹性模型
flex模型是w3c最新提出的一种盒子模型,很好的解决了普通模型的一些弊端. 一.比较两种盒子模型: demo: 给div添加边框,观察他们的区别 <body> <div class ...