Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.

Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ KN)cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same *location* as before, but ends up facing the *opposite direction*. A cow that starts out facing forward will be turned backward by the machine and vice-versa.

Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.

Input

Line 1: A single integer: N
Lines 2..
N+1: Line
i+1 contains a single character,
F or
B, indicating whether cow
i is facing forward or backward.

Output

Line 1: Two space-separated integers:
K and
M

Sample Input

7
B
B
F
B
F
B
B

Sample Output

3 3

Hint

For K = 3, the machine must be operated three times: turn cows (1,2,3), (3,4,5), and finally (5,6,7)
题目大意:
有n头奶牛排成一排,有的朝前有的朝后,现在你可以使k(每次翻转必须是k头)头奶牛一次性翻转朝向(n>=k>=1),问你最少的翻转次数和此时对应的k值。
思路:
  首先可以依次枚举区间长度len,在不同的区间长度的情况下,查看这样的长度是否能使奶牛全部朝前,并记录总翻转次数,取最小。
  进而在每种区间长度len的讨论中分析如下:
  对于目前的奶牛,我们的决策就两种,翻或不翻,这要看他在目前朝前还是朝后(对于判断这个我们可以去分析他本身的朝向和已翻过的次数,翻过奇数次则与初始相反,翻过偶数次相当于没翻,与初始相同),而且将一个区间的点翻转时不会影响到区间起点前面的点(无后效性),所以我们可以循环枚举区间[1,1+len-1]~[n-len+1,n],每次使左端点加1,同时要记录所有奶牛总翻转次数。
  决策在循环中,但这个循环结束并不一定所有的奶牛都能朝前,因为我们只能处理到距离最后一个奶牛len-1位置的奶牛(要翻转就只能翻转一个区间),所以如果循环结束但在最后几个未处理到的奶牛中有朝后的,则这个len不能使所有奶牛朝前(当然len=1时是一定可以的),进行下一个len(=len+1)的讨论。
  对于每种区间长度讨论出来的总翻转次数(如果最后都能朝前的话),取最小值。
  最终输出最小值以及它对应的区间长度len。
         嗯。。。。。大体上就是这样
  接下来是在每个决策中判断这个牛目前朝向时,如何查看记录过的这个牛翻过的次数。
  我们可以定义一个变量去记录当前处理的点的反转次数,如果他脱离一个区间,就减去他所脱离这个区间起点翻转的次数,也就是减1或者减0(因为一个区间我们只翻转1次或0次,多了没什么意义),这样这个变量就可以存储目前点翻转的次数了。
代码:
 #include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=5e3+;
int n;
char fac;
bool face[maxn],f[maxn];//face: 0->qian 1->hou f:0->don't need turn ,1->need
int Fan(int len){
memset(f,,sizeof(f));
int cishu=,sum=;//sum->已经turn的次数 cishu->turn的总次数
for(int i=;i+len-<=n;++i){
if((face[i]+sum)%==){//i朝后
cishu++;
f[i]=;
}
sum+=f[i];
if(i-len+>=)sum-=f[i-len+];//现在 sum 是下一个i已经turn的次数了
}
//因为最后一个i是离最后一头牛len-1长度,检查未处理过的牛是否朝后,if this,无解
for(int i=n-len++;i<=n;++i){
if((face[i]+sum)%==)return -;
if(i-len+>=)sum-=f[i-len+];
}
return cishu;
}
void Solve(){
int K=n,cishu=n;
for(int len=;len<=n;++len){//枚举区间长度
int m=Fan(len);
if(m>=&&cishu>m){
cishu=m;K=len;
}
}
printf("%d %d\n",K,cishu);
return;
}
int main(){
// freopen("1.in","r",stdin);
scanf("%d",&n);
for(int i=;i<=n;++i){
scanf(" %c",&fac);
if(fac=='B')face[i]=;
}
Solve();
return ;
}

Face The Right Way POJ - 3276(区间)的更多相关文章

  1. 反转(开关问题) POJ 3276

    POJ 3276 题意:n头牛站成线,有朝前有朝后的的,然后每次可以选择大小为k的区间里的牛全部转向,会有一个最小操作m次使得它们全部面朝前方.问:求最小操作m,再此基础上求k. 题解:1.5000头 ...

  2. POJ 3276 (开关问题)

    题目链接: http://poj.org/problem?id=3276 题目大意:有一些牛,头要么朝前要么朝后,现在要求确定一个连续反转牛头的区间K,使得所有牛都朝前,且反转次数m尽可能小. 解题思 ...

  3. POJ 2955 (区间DP)

    题目链接: http://poj.org/problem?id=2955 题目大意:括号匹配.对称的括号匹配数量+2.问最大匹配数. 解题思路: 看起来像个区间问题. DP边界:无.区间间隔为0时,默 ...

  4. POJ 1651 (区间DP)

    题目链接: http://poj.org/problem?id=1651 题目大意:加分取牌.如果一张牌左右有牌则可以取出,分数为左牌*中牌*右牌.这样最后肯定还剩2张牌.求一个取牌顺序,使得加分最少 ...

  5. POJ 3468 区间更新,区间求和(经典)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 72265   ...

  6. POJ 3264 区间最大最小值Sparse_Table算法

    题目链接:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total ...

  7. poj 3276(反转)

    传送门:Problem 3276 参考资料: [1]:挑战程序设计竞赛 先献上AC代码,题解晚上再补 题意: John有N头牛,这些牛有的头朝前("F"),有的朝后("B ...

  8. poj 3485 区间选点

    题目链接:http://poj.org/problem?id=3485 题意:X轴上公路从0到L,X轴上下有一些点给出坐标代表村庄,问在公路上最少建几个出口才能使每个村庄到出口的距离不超过D. 以村庄 ...

  9. POJ 2104 区间第k大(主席树)

    题目链接:http://poj.org/problem?id=2104 题目大意:给定还有n个数的序列,m个操作,每个操作含有l,r,k,求区间[l,r]第k大 解题思路:线段树只能维护序列的最大值最 ...

随机推荐

  1. Yuchuan_Linux_C编程之五gdb调试

    一.整体大纲 二.gdb调试 1. 启动gdb start -- 只执行一步    n -- next    s -- step(单步) -- 可以进入到函数体内部    c - continue - ...

  2. RedisTemplate:我不背锅,是你用错了

    今天分享一个RedisTemplate的问题,感兴趣的可以继续看下去了,不感兴趣的继续撩妹去吧! 如下图:一位朋友给了我一个报错的图片,为啥为啥取不到值? 我也有点懵,第一反应就是RedisTempl ...

  3. Await/Async

    Async其实就是Generator函数的语法糖. 啥是语法糖?就是一种更容易让人理解,代码可读性更高的另外一种语法. const asyncRead = async function(){ cons ...

  4. [pdo_mysql.lo] Error 1 或者 [php_mysql.lo] Error 1

    make: *** [pdo_mysql.lo] Error 1 make: *** [php_mysql.lo] Error 1 这是因为这是因为在编译时需要 MySQL 的头的文件.而它按默认搜索 ...

  5. 内网渗透之权限维持 - MSF

    年初九 天公生 0x034 MSF(美少妇) 启动msf msfconsole 先启动msf依赖的postgresql数据库 初始化数据库 msfdb init (要用普通用户) msf路径 /usr ...

  6. ALSA 声卡 驱动 linux 4.1.36 中变化

    linux 4.1.36 中变化 1ret = request_irq(IRQ_DMA2, s3c2440_dma2_irq, IRQF_DISABLED, "myalsa for play ...

  7. Redis篇之操作、lettuce客户端、Spring集成以及Spring Boot配置

    Redis篇之操作.lettuce客户端.Spring集成以及Spring Boot配置 目录 一.Redis简介 1.1 数据结构的操作 1.2 重要概念分析 二.Redis客户端 2.1 简介 2 ...

  8. vue-cli2.0项目 添加骨架屏

    1.创建项目 npm init webpack project 3.下载   vue-skeleton-webpack-plugin 插件 npm install vue-skeleton-webpa ...

  9. C++ 继承函数

    #include <iostream> using namespace std; class passport { public: passport() //默认构造 { } passpo ...

  10. 会话存储sessionStorage

    会话存储的工作方式和本地存储的工作方式很接近,不同之处在于数据是各个浏览器上下文私有的,会在文档被关闭时移除(注意是被关闭时才移除,刷新是不会移除的).我们通过全局sessionStorage访问会话 ...