淦!这题我做了三个月啊

题目描述

有两个仅包含小写英文字母的字符串 \(A\) 和 \(B\)。

现在要从字符串 \(A\) 中取出 \(k\) 个互不重叠的非空子串,然后把这 \(k\) 个子串按照其在字符串 \(A\) 中出现的顺序依次连接起来得到一个新的字符串。请问有多少种方案可以使得这个新串与字符串 \(B\) 相等?

注意:子串取出的位置不同也认为是不同的方案。

输入格式

第一行是三个正整数 \(n,m,k\),分别表示字符串 \(A\) 的长度,字符串 \(B\) 的长度,以及问题描述中所提到的 \(k\),每两个整数之间用一个空格隔开。

第二行包含一个长度为 \(n\) 的字符串,表示字符串 \(A\)。

第三行包含一个长度为 \(m\) 的字符串,表示字符串 \(B\)。

输出格式

一个整数,表示所求方案数。

由于答案可能很大,所以这里要求输出答案对 \(1000000007\) 取模的结果。

题解

首先有这些变量名:

\(dp[i][j][k]\) : 表示拿\(A[i]\)与\(B[j]\)配对,配成\(K\)段的方案数,假如\(A[i]\)和\(B[j]\)配不上的话就等于\(0\)。

\(sum[i][j][k]\) : 表示\(A\)从\(1\)到\(i\),能和\(B[j]\)配成\(K\)段的方案总数(\(dp\)数组的前缀和数组),意思就是\(sum[i][j][k] = dp[1][j][k] + dp[2][j][k]...+dp[i][j][k]\)。

那么考虑单独的\(A[i]\)和\(B[j]\),存在两种情况:

第一种是\(A[i]\)和\(B[j]\)配上了,那么就又分出两种情况:

第一种是\(A[i - 1]\)和\(B[j - 1]\)也配上了,那么可以直接接在它们后面,也可以另起炉灶(为什么不用考虑\(A[i - 1]\)和\(B[j - 1]\)没接上的情况?因为没接上的话\(dp[i - 1][j - 1] = 0\),无需考虑);

第二种是\(A[i - 1]\)和\(B[j - 1]\)没配上,那我们就必须找到某个\(A[i']\)和\(B[j - 1]\)配上了,而且配成了\(k - 1\)段的地方,让\(A[i]\)与\(B[j]\)接在后面配成第\(k\)段

然后我们发现,要找到\(A[i']\)和\(B[j']\)的位置是要\(O(n)\)处理的,时间复杂度承受不住,所以我们就要用到\(sum\)数组,不用找,直接累加起前一个匹配位置\(A[i']\)的方案数就可以

第二种是配不上\(A[i]\)与\(B[j]\)配不上,那么直接赋值为\(0\)

注意:我们的\(dp\)转移方式是用\(A\)数组的每一位去尝试匹配\(B\)的某一位,只有\(B\)的上一位已经匹配过了,这一位才能继续匹配

给大佬恰代码:

#include<bits/stdc++.h>
using namespace std;
#define rint register int
int n, m, k;
int dp[2][210][210], sum[2][210][210];
char a[1010], b[250];
inline int read( void ){
int re = 0, f = 1; char ch = getchar();
while( ch > '9' || ch < '0' ){
if( ch == '-' ) f = -1;
ch = getchar();
}
while( ch >= '0' && ch <= '9' ){
re = re * 10 + ch - '0';
ch = getchar();
}
return re * f;
}
int main( void ){
n = read(); m = read(); k = read();
scanf( "%s%s", a+1, b+1 );
dp[0][0][0] = 1;//一个都不匹配的方案数当然是0
int now = 0, pre = 1;
for( rint i = 1; i <= n; i++ ){
dp[now][0][0]=sum[now][0][0] = 1;
dp[pre][0][0]=sum[pre][0][0] = 1;
for( rint j = 1; j <= m; j++ ){
for( rint kk = 1; kk <= k; kk++ ){
if( a[i] == b[j] ){
dp[now][j][kk] = ( sum[pre][j - 1][kk - 1] + dp[pre][j - 1][kk] ) % 1000000007;
}
else dp[now][j][kk] = 0;
sum[now][j][kk] = ( sum[pre][j][kk] + dp[now][j][kk] ) % 1000000007; //处理前缀和
}
}
swap( now, pre );
}
cout << sum[pre][m][k];
return 0;
}

【题解】NOIP 2015 子串的更多相关文章

  1. UOJ #149 [NOIP 2015] 子串

    传送门 Solution DP+滚动数组. DP状态 \(dp[i][j][k]\): \(A\)的第\(i\)个字符和\(B\)的第\(j\)个字符匹配且该字符在第\(k\)个子串中的方案数. 转移 ...

  2. 洛谷 2679 [NOIP 2015] 子串

    题目戳这里 一句话题意 给你两个字符串A,B从A中取出K个不重合子串(顺序与在A中顺序相同)组成B,问有多少种方案? Solution 话说重打还是出各种错误也是醉了 先看题目,因为答案与A串,B串和 ...

  3. NOIP 2015 子串

    借鉴大神思路... #include<cstdio> #include<cstring> #include<cstdlib> #include<iostrea ...

  4. 4632 NOIP[2015] 运输计划

    4632 NOIP[2015] 运输计划  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 大师 Master 题解       题目描述 Description 公元 2044 ...

  5. [NOIP 2015]运输计划-[树上差分+二分答案]-解题报告

    [NOIP 2015]运输计划 题面: A[NOIP2015 Day2]运输计划 时间限制 : 20000 MS 空间限制 : 262144 KB 问题描述 公元 2044 年,人类进入了宇宙纪元. ...

  6. cogs 2109. [NOIP 2015] 运输计划 提高组Day2T3 树链剖分求LCA 二分答案 差分

    2109. [NOIP 2015] 运输计划 ★★★☆   输入文件:transport.in   输出文件:transport.out   简单对比时间限制:3 s   内存限制:256 MB [题 ...

  7. NOIP 2015

    Prob.1 2015 神奇的幻方 模拟就好了.(这不是noip2017的初赛题么.)代码: #include<cstdio> #include<cstring> #inclu ...

  8. Luogu 2680 NOIP 2015 运输计划(树链剖分,LCA,树状数组,树的重心,二分,差分)

    Luogu 2680 NOIP 2015 运输计划(树链剖分,LCA,树状数组,树的重心,二分,差分) Description L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之 ...

  9. Luogu 2668 NOIP 2015 斗地主(搜索,动态规划)

    Luogu 2668 NOIP 2015 斗地主(搜索,动态规划) Description 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来 ...

随机推荐

  1. Python类变量与实例变量及成员函数修饰方式说明(与Java定义方式进行类比)

    Python类中的变量有类变量和实例变量之分. 类变量:变量绑定在类上,同一个类之间的共享变量,类比于Java中的静态变量static 公有变量定义 Java 的定义方式 class Test{ pu ...

  2. stack|session|fuss|anniversary

    N-COUNT A stack of things is a pile of them. 摞; 堆 例: There were stacks of books on the bedside table ...

  3. [洛谷P4782] [模板] 2-SAT 问题

    NOIp后第一篇题解. NOIp我考的很凉啊...... 题目传送门 之前讲过怎么判断2-SAT是否存在解. 至于如何构造一组解: 我们想到对tarjan缩点后的图进行拓扑排序. 那么对于代表0状态的 ...

  4. ionic2踩坑之ionic resources失败

    网上关于ionic2怎么修改应用图标和启动画面资料也挺多的.不过大家执行ionic resources的时候不少人都执行失败了,关于执行失败的原因网上很少.下面分享一下我的经验吧. 1.看自己的项目下 ...

  5. Nginx笔记总结九:Nginx日志配置

    ngx_http_log_module用来定义请求日志格式1. access_log指令 语法:   access_log path [format [buffer=size [flush=time] ...

  6. 为何印度打车软件Ola,也难逃“资本合并”命运?

    从全球市场来看,共享经济已经引发了多场具有颠覆性的风暴.尤其是在与大众关系紧密的衣食住行方面,诞生了具有强势影响力的独角兽企业.如,共享打车企业Uber.共享房屋出租企业Airbnb等.而鉴于每个国家 ...

  7. input系统——android input系统

    AndroidInput系统--JNI NativeInputManager InputManger InputReader AndroidInput系统--InputReader AndroidIn ...

  8. Ubuntu14-04安装redis和php5-redis扩展

    PS:在系统安装完后最好执行下列命令更新下软件 实际上只要软件源没什么问题的话,安装什么软件都是OK的. 来开始安装Redis吧~~ 一:如果你的其他都OK的话,可以执行下列命令直接安装 sudo a ...

  9. win7/win8下vmware/VirtualBox虚拟网卡显示未识别网络的解决

    http://blog.csdn.net/zengxianying/article/details/44017227

  10. Java Timer和TimerTask

    Timer是JDK中提供的一个定时器工具,使用的时候会在主线程之外起一个单独的线程执行指定的任务,可以指定一次或多次. TimerTask是一个实现了Runnable接口的抽象类,代表一个可被执行的任 ...